Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Increase in acidifying water in the western Arctic Ocean

Abstract

The uptake of anthropogenic CO2 by the ocean decreases seawater pH and carbonate mineral aragonite saturation state (Ωarag), a process known as Ocean Acidification (OA). This can be detrimental to marine organisms and ecosystems1,2. The Arctic Ocean is particularly sensitive to climate change3 and aragonite is expected to become undersaturated (Ωarag < 1) there sooner than in other oceans4. However, the extent and expansion rate of OA in this region are still unknown. Here we show that, between the 1990s and 2010, low Ωarag waters have expanded northwards at least 5°, to 85° N, and deepened 100 m, to 250 m depth. Data from trans-western Arctic Ocean cruises show that Ωarag < 1 water has increased in the upper 250 m from 5% to 31% of the total area north of 70° N. Tracer data and model simulations suggest that increased Pacific Winter Water transport, driven by an anomalous circulation pattern and sea-ice retreat, is primarily responsible for the expansion, although local carbon recycling and anthropogenic CO2 uptake have also contributed. These results indicate more rapid acidification is occurring in the Arctic Ocean than the Pacific and Atlantic oceans5,6,7,8, with the western Arctic Ocean the first open-ocean region with large-scale expansion of ‘acidified’ water directly observed in the upper water column.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Latitudinal distributions of aragonite mineral saturation state (Ωarag) in the western Arctic Ocean from multiple cruises during 1994–2010 and their locations.
Figure 2: Increase in subsurface area of ‘acidified’ water in the western Arctic Ocean between 1994 and 2010.
Figure 3: Data and model simulations of factors influencing aragonite saturation in the western Arctic Ocean.
Figure 4: Schematic representation of the extent of Ωarag change driven by environmental and climate changes in the western Arctic Ocean between the early 1990s and 2010s.

Similar content being viewed by others

References

  1. Orr, J. C. et al. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437, 681–686 (2005).

    Article  CAS  Google Scholar 

  2. Sabine, C. L. et al. The oceanic sink for anthropogenic CO2 . Science 305, 367–371 (2004).

    Article  CAS  Google Scholar 

  3. Steele, M., Ermold, W. & Zhang, J. Arctic Ocean surface warming trends over the past 100 years. Geophys. Res. Lett. 35, 244–255 (2008).

    Article  Google Scholar 

  4. Steinacher, M., Joos, F., Frolicher, T., Plattner, G.-K. & Doney, S. C. Imminent ocean acidification in the Arctic projected with the NCAR global coupled carbon cycle-climate model. Biogeosciences 6, 515–533 (2009).

    Article  CAS  Google Scholar 

  5. Murata, A. & Saito, S. Decadal changes in the CaCO3 saturation state along 179° E in the Pacific Ocean. Geophys. Res. Lett. 39, 4537–4541 (2012).

    Article  Google Scholar 

  6. Guallart, E. F. et al. Ocean acidification along the 24.5° N section in the subtropical North Atlantic. Geophys. Res. Lett. 42, 450–458 (2015).

    Article  CAS  Google Scholar 

  7. Ríos, A. F. et al. Decadal acidification in the water masses of the Atlantic Ocean. Proc. Natl Acad. Sci. USA 112, 9950–9955 (2015).

    Article  Google Scholar 

  8. Woosley, R. J., Millero, F. J. & Wanninkhof, R. Rapid anthropogenic changes in CO2 and pH in the Atlantic Ocean: 2003–2014. Glob. Biogeochem. Cycles 30, 70–90 (2016).

    Article  CAS  Google Scholar 

  9. Perovich, D. K. & Richter-Menge, J. A. Loss of sea ice in the Arctic. Ann. Rev. Mar. Sci. 1, 417–441 (2009).

    Article  Google Scholar 

  10. Woodgate, R. A., Weingartner, T. J. & Lindsay, R. Observed increases in Bering Strait oceanic fluxes from the Pacific to the Arctic from 2001 to 2011 and their impacts on the Arctic Ocean water column. Geophys. Res. Lett. 39, L24603 (2012).

    Article  Google Scholar 

  11. Giles, K. A., Laxon, S. W., Ridout, A. L., Wingham, D. J. & Bacon, S. Western Arctic Ocean freshwater storage increased by wind-driven spin-up of the Beaufort Gyre. Nat. Geosci. 5, 194–197 (2012).

    Article  CAS  Google Scholar 

  12. Arrigo, K. R. & van Dijken, G. L. Secular trends in Arctic Ocean net primary production. J. Geophys. Res. 116, 1527–1540 (2011).

    Google Scholar 

  13. Cai, W. J. et al. Decrease in the CO2 uptake capacity in an ice-free Arctic Ocean basin. Science 329, 556–559 (2010).

    Article  CAS  Google Scholar 

  14. Yamamoto-Kawai, M., McLaughlin, F. A., Carmack, E. C., Nishino, S. & Shimada, K. Aragonite undersaturation in the Arctic Ocean: effects of ocean acidification and sea ice melt. Science 326, 1098–1100 (2009).

    Article  CAS  Google Scholar 

  15. Robbins, L. L. et al. Baseline monitoring of the Western Arctic Ocean estimates 20% of Canadian Basin surface waters are undersaturated with respect to aragonite. PLoS ONE 8, e73796 (2013).

    Article  CAS  Google Scholar 

  16. Bates, N. R., Mathis, J. T. & Cooper, L. W. Ocean acidification and biologically induced seasonality of carbonate mineral saturation states in the western Arctic Ocean. J. Geophys. Res. 114, C11007 (2009).

    Article  Google Scholar 

  17. Mathis, J. T. et al. Storm-induced upwelling of high pCO2 waters onto the continental shelf of the western Arctic Ocean and implications for carbonate mineral saturation states. Geophys. Res. Lett. 39, L07606 (2012).

    Google Scholar 

  18. Azetsu-Scott, K. et al. Calcium carbonate saturation states in the waters of the Canadian Arctic Archipelago and the Labrador Sea. J. Geophys. Res. 115, C11021 (2010).

    Article  Google Scholar 

  19. Chen, B. Responses of Marine Carbonate System to Warming and Sea-Ice Retreat in the Pacific Sector of the Arctic Ocean (PhD thesis, Univ. Georgia, 2015).

    Google Scholar 

  20. Arrigo, K. R. et al. Massive phytoplankton blooms under Arctic sea ice. Science 336, 1408 (2012).

    Article  CAS  Google Scholar 

  21. Lee, S. H., Joo, H. M., Liu, Z., Chen, J. & He, J. Phytoplankton productivity in newly opened waters of the Western Arctic Ocean. Deep-Sea Res. Pt II 81–84, 18–27 (2012).

    Article  Google Scholar 

  22. Coachman, L. K., Aagaard, K. & Tripp, R. B. Bering Strait: The Regional Physical Oceanography (Univ. Washington Press, 1975).

    Google Scholar 

  23. Brugler, E. T. et al. Seasonal to interannual variability of the Pacific water boundary current in the Beaufort Sea. Prog. Oceanogr. 127, 1–20 (2014).

    Article  Google Scholar 

  24. Itoh, M. et al. Interannual variability of Pacific Winter Water inflow through Barrow Canyon from 2000 to 2006. J. Oceanogr. 68, 575–592 (2012).

    Article  Google Scholar 

  25. Pickart, R. S., Weingartner, T. J., Pratt, L. J., Zimmermann, S. & Torres, D. J. Flow of winter-transformed Pacific water into the Western Arctic. Deep-Sea Res. Pt II 52, 3175–3198 (2005).

    Article  Google Scholar 

  26. Weingartner, T. et al. Circulation on the north central Chukchi Sea shelf. Deep-Sea Res. II 52, 3150–3174 (2005).

    Google Scholar 

  27. Jones, E. P., Anderson, L. G., Jutterström, S., Mintrop, L. & Swift, J. H. Pacific freshwater, river water and sea ice meltwater across Arctic Ocean basins: results from the 2005 Beringia Expedition. J. Geophys. Res. 113, 179–185 (2008).

    Article  Google Scholar 

  28. Yamamoto-Kawai, M., McLaughlin, F. A., Carmack, E. C., Nishino, S. & Shimada, K. Freshwater budget of the Canada Basin, Arctic Ocean, from salinity, δ18O, and nutrients. J. Geophys. Res. 113, C01007 (2008).

    Article  Google Scholar 

  29. Proshutinsky, A., Dukhovskoy, D., Timmermans, M. L., Krishfield, R. & Bamber, J. L. Arctic circulation regimes. Phil. Trans. A 373, http://dx.doi.org/10.1098/rsta.2014.0160 (2015).

  30. Wang, M. & Overland, J. E. A sea ice free summer Arctic within 30 years? Geophys. Res. Lett. 36, 251–254 (2009).

    Google Scholar 

  31. Chen, B., Cai, W. J. & Chen, L. The marine carbonate system of the Arctic Ocean: assessment of internal consistency and sampling considerations, summer 2010. Mar. Chem. 176, 174–188 (2015).

    Article  CAS  Google Scholar 

  32. Huang, W.-J., Wang, Y. & Cai, W.-J. Assessment of sample storage techniques for total alkalinity and dissolved inorganic carbon in seawater. Limnol. Oceanogr. Methods 10, 711–717 (2012).

    Article  CAS  Google Scholar 

  33. Gordon, L. I., Jennings, J. C. Jr, Ross, A. A. & Krest, J. M. A Suggested Protocol for Continuous Flow Automated Analysis of Seawater Nutrients (Phosphate, Nitrate, Nitrite and Silicic Acid) in the WOCE Hydrographic Program and the Joint Global Ocean Fluxes Study WOCE Operations Manual Ch. 3 Version 91-1 (1993).

    Google Scholar 

  34. Tanhua, T. et al. Ventilation of the Arctic Ocean: mean ages and inventories of anthropogenic CO2 and CFC-11. J. Geophys. Res. 114, 362–370 (2009).

    Article  Google Scholar 

  35. Ericson, Y., Ulfsbo, A., van Heuven, S., Kattner, G. & Anderson, L. G. Increasing carbon inventory of the intermediate layers of the Arctic Ocean. J. Geophys. Res. 119, 2312–2326 (2014).

    Article  CAS  Google Scholar 

  36. Jutterström, S. et al. Arctic Ocean data in CARINA. Earth Syst. Sci. Data 2, 71–78 (2010).

    Google Scholar 

  37. Lewis, E., Wallace, D. & Allison, L. J. Program Developed for CO2 System Calculations (Carbon Dioxide Information Analysis Center, 1998).

    Book  Google Scholar 

  38. Roy, R. et al. Determination of the ionization constants of carbonic acid in seawater. Mar. Chem. 44, 249–268 (1993).

    Article  CAS  Google Scholar 

  39. Mucci, A. The solubility of calcite and aragonite in seawater at various salinities, temperatures and one atmosphere total pressure. Am. J. Sci. 283, 789–799 (1983).

    Google Scholar 

  40. Dickson, A. G. Standard potential of the reaction: AgCl (s) + 1/2H2 (g) = Ag (s) + HCl (aq), and the standard acidity constant of the ion HSO4 in synthetic sea water from 273.15 to 318.15 K. J. Chem. Therm. 22, 113–127 (1990).

    Article  CAS  Google Scholar 

  41. Chierici, M. & Fransson, A. Calcium carbonate saturation in the surface water of the Arctic Ocean: undersaturation in freshwater influenced shelves. Biogeosciences 6, 2421–2431 (2009).

    Article  CAS  Google Scholar 

  42. Mehrbach, C., Culberson, C. H., Hawley, J. E. & Pytkowicx, R. M. Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol. Oceanogr. 18, 897–907 (1973).

    Article  CAS  Google Scholar 

  43. Dickson, A. G. & Millero, F. J. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep-Sea Res. 34, 1733–1743 (1987).

    Article  CAS  Google Scholar 

  44. Feely, R. A. et al. Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305, 362–366 (2004).

    Article  CAS  Google Scholar 

  45. Broecker, W. S. & Peng, T. H. Tracers in the Sea 690 (Eldigio, Palisades, 1982).

    Google Scholar 

  46. Devol, A. H., Codispoti, L. A. & Christensen, J. P. Summer and winter denitrification rates in western Arctic shelf sediments. Cont. Shelf Res. 17, 1029–1050 (1997).

    Article  Google Scholar 

  47. Tanaka, T., Guo, L., Deal, C. & Tanaka, N. N deficiency in a well-oxygenated cold bottom water over the Bering Sea shelf: influence of sedimentary denitrification. Cont. Shelf Res. 24, 1271–1283 (2004).

    Article  Google Scholar 

  48. Yamamoto-Kawai, M., Carmack, E. & Mclaughlin, F. Nitrogen balance and Arctic throughflow. Nature 443, 43 (2006).

    Article  CAS  Google Scholar 

  49. Anderson, L. G. Air–sea flux of anthropogenic carbon dioxide in the North Atlantic. Geophys. Res. Lett. 29, 1835 (2002).

    Google Scholar 

  50. Smethie, W. M., Schlosser, P., Bönisch, G. & Hopkins, T. S. Renewal and circulation of intermediate waters in the Canadian Basin observed on the SCICEX 96 cruise. J. Geophys. Res. 105, 1105–1121 (2000).

    Article  Google Scholar 

  51. Gruber, N. et al. Rapid progression of ocean acidification in the California current system. Science 337, 220–223 (2012).

    Article  CAS  Google Scholar 

  52. Waldbusser, G. G. et al. Saturation-state sensitivity of marine bivalve larvae to ocean acidification. Nat. Clim. Change 5, 273–280 (2014).

    Article  Google Scholar 

  53. Ekstrom, J. A. et al. Vulnerability and adaptation of US shellfisheries to ocean acidification. Nat. Clim. Change 5, 207–214 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (41230529, 41476172, 41476173 and 41406221), Chinese Projects for Investigations and Assessments of the Arctic and Antarctic (CHINARE2012-2016 for 01-04, 02-01, 03-04, 04-04 and 04-03), and Chinese International Cooperation Projects (2015DFG22010, IC201513). The University of Delaware group (formerly at the University of Georgia) was supported by NSF (ARC-0909330 and PLR-1304337) and NOAA (NA09OAR4310078). We thank R. Wanninkhof and Y. Wang for their contributions to the programme and P. Yager for providing CO2 data of SHEBA 1998. This is PMEL contribution number: 4542.

Author information

Authors and Affiliations

Authors

Contributions

D.Q., L.C., B.C. and W.-J.C. contributed equally to this paper. L.C. and W.-J.C. designed the program and D.Q., B.C., Z.G. and H.S. executed the field work. D.Q., B.C., L.C. and W.-J.C. analysed the data and prepared the paper. W.Z., M.C., J.C., L.Z., Y.Z. and L.G.A. contributed materials and data. All authors contributed to discussion and writing.

Corresponding authors

Correspondence to Liqi Chen or Wei-Jun Cai.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 948 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, D., Chen, L., Chen, B. et al. Increase in acidifying water in the western Arctic Ocean. Nature Clim Change 7, 195–199 (2017). https://doi.org/10.1038/nclimate3228

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate3228

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing