Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

El Niño and a record CO2 rise

The recent El Niño event has elevated the rise in CO2 concentration this year. Here, using emissions, sea surface temperature data and a climate model, we forecast that the CO2 concentration at Mauna Loa will for the first time remain above 400 ppm all year, and hence for our lifetimes.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identifying, testing and forecasting the relationship between Niño 3.4 SST anomalies and Mauna Loa CO2 growth rates.
Figure 2: CO2 growth rate (minus anthropogenic emissions component) versus Niño 3.4 anomaly9.
Figure 3: Observed and forecast CO2 concentrations at Mauna Loa.

References

  1. Ciais, P. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 6 (IPCC, Cambridge Univ. Press, 2013).

    Google Scholar 

  2. Le Quéré, C. et al. Earth Syst. Sci. Data 7, 349–396 (2015).

    Article  Google Scholar 

  3. Keeling, C. D. et al. in A History of Atmospheric CO2 and its Effects on Animals, Plants, and Ecosystems (eds Ehleringer, J. R., Cerling, T. E. & Dearing, M. D.) Ch. 5 (Scripps Institution of Oceanography, 2001).

  4. Thoning, K. W., Tans, P. P. & Komhyr, W. D. J. Geophys. Res. 94, 8549–8565 (1989).

    Article  CAS  Google Scholar 

  5. Bacastow, R. B. Nature 261, 116–118 (1976).

    Article  CAS  Google Scholar 

  6. Bacastow, R. B. et al. Science 210, 66–68 (1980).

    Article  CAS  Google Scholar 

  7. Keeling, C. D., Whorf, T. P., Whalen, M. & van der Plicht, J. Nature 375, 666–670 (1995).

    Article  CAS  Google Scholar 

  8. Jones, C. D., Collins, M., Cox, P. M. & Spall, S. A. J. Clim. 14, 4113–4129 (2001).

    Article  Google Scholar 

  9. Jones, C. D. & Cox, P. M. Geophys. Res. Lett. 32, L14816 (2005).

    Google Scholar 

  10. Kennedy, J. J., Rayner, N. A., Smith, R. O., Saunby, M. & Parker, D. E. J. Geophys. Res. 116, D14104 (2011).

    Article  Google Scholar 

  11. Page, S. E. et al. Nature 420, 61–65 (2002).

    Article  CAS  Google Scholar 

  12. Langmann, B. & Heil, A. Atmos. Chem. Phys. 4, 2145–2160 (2004).

    Article  CAS  Google Scholar 

  13. Global Fire Emissions Database (Global Fire Data, accessed 27 May 2016); http://globalfiredata.org,

  14. MacLachlan, C. et al. Q. J. R. Meteorol. Soc. 141, 1072–1084 (2014).

    Article  Google Scholar 

  15. Howard, B. C. Northern hemisphere cracks 400 ppm CO2 for whole month for first time. National Geographic (May 27 2014); http://go.nature.com/1spge8j

  16. Jackson, R. B. et al. Nature Clim. Change 6, 7–10 (2015).

    Article  Google Scholar 

  17. Field, R. D., van der Werf, G. R. & Shen, S. S. P. Nature Geosci. 2, 185–188 (2009).

    Article  CAS  Google Scholar 

  18. Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A. & Totterdell, I. J. Nature 408, 184–187 (2000).

    Article  CAS  Google Scholar 

  19. Collins, M. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 12 (IPCC, Cambridge Univ. Press, 2013).

    Google Scholar 

  20. Cox, P. M. et al. Nature 494, 341–345 (2013).

    Article  CAS  Google Scholar 

  21. van Vuuren, D. et al. Climatic Change 109, 95–116 (2011).

    Article  Google Scholar 

  22. Smith, P. et al. Nature Clim. Change 6, 42–50 (2016).

    Article  CAS  Google Scholar 

  23. Anderson, K. Nature Geosci. 8, 898–900 (2015).

    Article  CAS  Google Scholar 

  24. Keeling, R. F. Is this the last year below 400? The Keeling Curve (21 October 2015); http://go.nature.com/1X2gXc1

Download references

Acknowledgements

We thank C. MacLachlan for performing the GloSea5 simulations, N. Rayner for providing the HadSST data, and S. Ineson and A. Scaife for comments. R.A.B received support from the European Commission's 7th Framework Programme (EU/FP7) under Grant Agreement 603864 (HELIX). The work of R.A.B., C.D.J., J.R.K. and J.J.K. forms part of the DECC/Defra Met Office Hadley Centre Climate Programme GA01101. R.F.K. was supported by the US Department of Energy under award DE-SC0012167 and by Schmidt Philanthropies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard A. Betts.

Supplementary information

Supplementary Information

Supplementary Information (PDF 550 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Betts, R., Jones, C., Knight, J. et al. El Niño and a record CO2 rise. Nature Clim Change 6, 806–810 (2016). https://doi.org/10.1038/nclimate3063

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate3063

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing