Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Greenhouse-gas payback times for crop-based biofuels

Abstract

A global increase in the demand for crop-based biofuels may be met by cropland expansion, and could require the sacrifice of natural vegetation. Such land transformation alters the carbon and nitrogen cycles of the original system, and causes significant greenhouse-gas emissions, which should be considered when assessing the global warming performance of crop-based biofuels. As an indicator of this performance we propose the use of greenhouse-gas payback time (GPBT), that is, the number of years it takes before the greenhouse-gas savings due to displacing fossil fuels with biofuels equal the initial losses of carbon and nitrogen stocks from the original ecosystem. Spatially explicit global GPBTs were derived for biofuel production systems using five different feedstocks (corn, rapeseed, soybean, sugarcane and winter wheat), cultivated under no-input and high-input farm management. Overall, GPBTs were found to range between 1 and 162 years (95% range, median: 19 years) with the longest GPBTs occurring in the tropics. Replacing no-input with high-input farming typically shortened the GPBTs by 45 to 79%. Location of crop cultivation was identified as the primary factor driving variation in GPBTs. This study underscores the importance of using spatially explicit impact assessments to guide biofuel policy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Global maps of GPBTs for the five bioenergy crops under no-input and high-input farm management.
Figure 2: Histograms of ΔGPBT showing the change in payback times when converting no-input farming to high-input farming of the same feedstock crop.
Figure 3: Histograms of the GPBTs for the five energy crops under no-input and high-input farm management.

Similar content being viewed by others

References

  1. Sorda, G., Banse, M. & Kemfert, C. An overview of biofuel policies across the world. Energy Policy 38, 6977–6988 (2010).

    Article  Google Scholar 

  2. Faaij, A. P. C. Bio-energy in Europe: Changing technology choices. Energy Policy 34, 322–342 (2006).

    Article  Google Scholar 

  3. Naik, S. N., Goud, V. V., Rout, P. K. & Dalai, A. K. Production of first and second generation biofuels: A comprehensive review. Renew. Sust. Energ. Rev. 14, 578–597 (2010).

    Article  CAS  Google Scholar 

  4. Singh, A., Nigam, P. S. & Murphy, J. D. Renewable fuels from algae: An answer to debatable land based fuels. Bioresour. Technol. 102, 10–16 (2011).

    Article  CAS  Google Scholar 

  5. Johnson, J. A., Runge, C. F., Senauer, B., Foley, J. & Polasky, S. Global agriculture and carbon trade-offs. Proc. Natl Acad. Sci. USA 111, 12342–12347 (2014).

    Article  CAS  Google Scholar 

  6. Popp, A. et al. Land-use protection for climate change mitigation. Nature Clim. Change 4, 1095–1098 (2014).

    Article  CAS  Google Scholar 

  7. Guo, L. B. & Gifford, R. M. Soil carbon stocks and land use change: A meta analysis. Glob. Change Biol. 8, 345–360 (2002).

    Article  Google Scholar 

  8. Don, A., Schumacher, J. & Freibauer, A. Impact of tropical land-use change on soil organic carbon stocks—a meta-analysis. Glob. Change Biol. 17, 1658–1670 (2011).

    Article  Google Scholar 

  9. Olson, K. R., Gennadiyev, A. N., Zhidkin, A. P. & Markelov, M. V. Impacts of land-use change, slope, and erosion on soil organic carbon retention and storage. Soil Sci. 177, 269–278 (2012).

    Article  CAS  Google Scholar 

  10. Fargione, J., Hill, J., Tilman, D., Polasky, S. & Hawthorne, P. Land clearing and the biofuel carbon debt. Science 319, 1235–1238 (2008).

    Article  CAS  Google Scholar 

  11. Searchinger, T. et al. Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319, 1238–1240 (2008).

    Article  CAS  Google Scholar 

  12. Lamers, P. & Junginger, M. The ‘debt’ is in the detail: A synthesis of recent temporal forest carbon analyses on woody biomass for energy. Biofuels Bioprod. Biorefin. 7, 373–385 (2013).

    Article  CAS  Google Scholar 

  13. Gibbs, H. K. et al. Carbon payback times for crop-based biofuel expansion in the tropics: The effects of changing yield and technology. Environ. Res. Lett. 3, 1–10 (2008).

    Article  Google Scholar 

  14. Havlík, P. et al. Global land-use implications of first and second generation biofuel targets. Energy Policy 39, 5690–5702 (2011).

    Article  Google Scholar 

  15. Kim, H., Kim, S. & Dale, B. E. Biofuels, land use change, and greenhouse gas emissions: Some unexplored variables. Environ. Sci. Technol. 43, 961–967 (2009).

    Article  CAS  Google Scholar 

  16. Yang, Y. & Sugh, S. Marginal yield, technological advances, and emissions timing in corn ethanol’s carbon payback time. Int. J. Life Cycle Assess. 20, 226–232 (2015).

    Article  CAS  Google Scholar 

  17. Lamers, P., Junginger, M., Dymond, C. C. & Faaij, A. Damaged forests provide an opportunity to mitigate climate change. Glob. Change Biol. 6, 44–60 (2013).

    Article  Google Scholar 

  18. Danielsen, F. et al. Biofuel plantation on forested lands: Double jeopardy for biodiversity and climate. Conserv. Biol. 23, 348–358 (2008).

    Article  Google Scholar 

  19. Adler, P. R., Grosso, S. J. D. & Parton, W. J. Life-cycle assessment of net greenhouse-gas flux for bioenergy cropping systems. Ecol. Appl. 17, 675–691 (2007).

    Article  Google Scholar 

  20. Hoefnagels, R., Smeets, E. & Faaij, A. Greenhouse gas footprints of different biofuel production systems. Renew. Sust. Energ. Rev. 14, 1661–1694 (2010).

    Article  CAS  Google Scholar 

  21. Kim, S. & Dale, B. E. Life cycle assessment of fuel ethanol derived from corn grain via dry milling. Bioresour. Technol. 99, 5250–5260 (2008).

    Article  CAS  Google Scholar 

  22. Kim, S. & Dale, B. E. Regional variations in greenhouse gas emissions of biobased products in the United States—corn-based ethanol and soybean oil. Int. J. Life Cycle Assess. 14, 540–546 (2009).

    Article  Google Scholar 

  23. Wang, M., Huo, H. & Arora, S. Methods of dealing with co-products of biofuels in life-cycle analysis and consequent results within the U.S. context. Energy Policy 39, 5726–5736 (2011).

    Article  CAS  Google Scholar 

  24. Flynn, H. C. et al. Quantifying global greenhouse gas emissions from land-use change for crop production. Glob. Change Biol. 18, 1622–1635 (2012).

    Article  Google Scholar 

  25. Tilman, D., Hill, J. & Lehman, C. Carbon-negative biofuels from low-input high-diversity grassland biomass. Science 314, 1598–1600 (2006).

    Article  CAS  Google Scholar 

  26. Conant, R. T., Paustian, K. & Elliott, E. T. Grassland management and conversion into grassland: Effects on soil carbon. Ecol. Appl. 11, 343–355 (2001).

    Article  Google Scholar 

  27. Zan, C. S., Fyles, J. W., Girouard, P. & Samson, R. A. Carbon sequestration in perennial bioenergy, annual corn and uncultivated systems in southern Quebec. Agric. Ecosyst. Environ. 86, 135–144 (2001).

    Article  Google Scholar 

  28. Lasco, R. D. et al. in 2006 IPCC Guidelines for National Greenhouse Gas Inventories Vol. 4 (eds Eggleston, H. S. et al.) Ch. 5, 25–41 (IPCC, IGES, 2006).

    Google Scholar 

  29. Donato, D. C. et al. Mangroves among the most carbon-rich forests in the tropics. Nature Geosci. 4, 293–297 (2011).

    Article  CAS  Google Scholar 

  30. Jauhiainen, J., Takahashi, H., Heikkinen, J. E. P., Martikainen, P. J. & Vasander, H. Carbon fluxes from a tropical peat swamp forest floor. Glob. Change Biol. 11, 1788–1797 (2005).

    Article  Google Scholar 

  31. Germer, J. & Sauerborn, J. Estimation of the impact of oil palm plantation establishment on greenhouse gas balance. Environ. Dev. Sustain 10, 697–716 (2008).

    Article  Google Scholar 

  32. Murdiyarso, D., Hergoualc’h, K. & Verchot, L. V. Opportunities for reducing greenhouse gas emissions in tropical peatlands. Proc. Natl Acad. Sci. USA 107, 19655–19660 (2010).

    Article  CAS  Google Scholar 

  33. Ruesch, A. & Gibbs, H. K. New IPCC Tier-1 Global Biomass Carbon Map For the Year 2000 (CDIAC, Oak Ridge National Laboratory, 2008); http://cdiac.ornl.gov/epubs/ndp/global˙carbon/carbon˙documentation.html

    Google Scholar 

  34. Keith, H., Mackey, B. G. & Lindenmayer, D. B. Re-evaluation of forest biomass carbon stocks and lessons from the world’s most carbon-dense forests. Proc. Natl Acad. Sci. USA 106, 11635–11640 (2009).

    Article  CAS  Google Scholar 

  35. Weidema, B. P. et al. Data Quality Guideline for the Ecoinvent Database Version 3 (The Ecoinvent Centre, 2013).

    Google Scholar 

  36. Jaggard, K. W., Qi, A. & Ober, E. S. Possible changes to arable crop yields by 2050. Phil. Trans. R. Soc. B 365, 2835–2851 (2010).

    Article  Google Scholar 

  37. Ewert, F., Rounsevell, M. D. A., Reginster, I., Metzger, M. J. & Leemans, R. Future scenarios of European agricultural land use: Estimating changes in crop productivity. Agric. Ecosyst. Environ. 107, 101–116 (2005).

    Article  Google Scholar 

  38. Rosenzweig, C. et al. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc. Natl Acad. Sci. USA 111, 3268–3273 (2014).

    Article  CAS  Google Scholar 

  39. Friend, A. D. et al. Carbon residence time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric CO2 . Proc. Natl Acad. Sci. USA 111, 3280–3285 (2014).

    Article  CAS  Google Scholar 

  40. Van Groenigen, K. J., Qi, X., Osenberg, C. W., Luo, Y. & Hungate, B. A. Faster decomposition under increased atmospheric CO2 limits soil carbon storage. Science 344, 508–509 (2014).

    Article  CAS  Google Scholar 

  41. Kim, S. & Dale, B. E. Indirect land use change for biofuels: Testing predictions and improving analytical methodologies. Biomass Bioenerg. 35, 3235–3240 (2011).

    Article  Google Scholar 

  42. Zilberman, D., Hochman, G., Rajagopal, D., Sexton, S. & Timilsina, G. The impact of biofuels on commodity food prices: Assessment of findings. Am. J. Agric. Econ. 95, 275–281 (2013).

    Article  Google Scholar 

  43. Kim, S. & Dale, B. E. Life cycle assessment of various cropping systems utilized for producing biofuels: Bioethanol and biodiesel. Biomass Bioenerg. 29, 426–439 (2005).

    Article  Google Scholar 

  44. Börjesson, P. & Tufvesson, L. M. Agricultural crop-based biofuels—resource efficiency and environmental performance including direct land use changes. J. Clean. Prod. 19, 108–120 (2011).

    Article  Google Scholar 

  45. Van Der Velde, M., Bouraoui, F. & Aloe, A. Pan-European regional-scale modelling of water and N efficiencies of rapeseed cultivation for biodiesel production. Glob. Change Biol. 15, 24–37 (2009).

    Article  Google Scholar 

  46. Sierra, C. A. et al. Total carbon stocks in a tropical forest landscape of the Porce region, Colombia. Forest Ecol. Manage. 243, 299–309 (2007).

    Article  Google Scholar 

  47. Grace, J., San José, J., Meir, P., Miranda, H. S. & Montes, R. A. Productivity and carbon fluxes of tropical savannas. J. Biogeogr. 33, 387–400 (2006).

    Article  Google Scholar 

  48. Izaurralde, R. C., Williams, J. R., McGill, W. B., Rosenberg, N. J. & Quiroga Jakas, M. C. Simulating soil C dynamics with EPIC: Model description and testing against long-term data. Ecol. Modelling 192, 362–384 (2006).

    Article  Google Scholar 

  49. Cherubini, F., Peters, G. P., Berntsen, T., Strømman, A. H. & Hertwich, E. CO2 emissions from biomass combustion for bioenergy: Atmospheric decay and contribution to global warming. Glob. Change Biol. 3, 413–426 (2011).

    Article  CAS  Google Scholar 

  50. Shcherbak, I., Millar, N. & Robertson, G. P. Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen. Proc. Natl Acad. Sci. USA 111, 9199–9204 (2014).

    Article  CAS  Google Scholar 

  51. De Klein, C. et al. in 2006 IPCC Guidelines for National Greenhouse Gas Inventories Vol. 4 (eds Eggleston, H. S. et al.) Ch. 11, 19–24 (IPCC, IGES, 2006).

    Google Scholar 

  52. IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

    Google Scholar 

Download references

Acknowledgements

The research was partly financially supported by three projects of the European Commission under the 7th framework program for the environment, ENV.2012.6.3-3: DESIRE—DEvelopment of a System of Indicators for a Resource efficient Europe, grant agreement 308552; ENV.2008.3.3.2.1: PROSUITE—Sustainability Assessment of Technologies, grant agreement 227078; and ENV. 2009.3.3.2.1: LC-IMPACT—Improved Life Cycle Impact Assessment methods (LCIA) for better sustainability assessment of technologies, grant agreement 243827. M.A.J.H. was further financially supported by the Dutch National Institute for Public Health and the Environment RIVM-project S/607020, Measurably Sustainable within the spearhead Healthy and Sustainable Living Environment, commissioned by the Director-General of RIVM and run under the auspices of RIVM’s Science Advisory Board.

Author information

Authors and Affiliations

Authors

Contributions

P.M.F.E., R.v.Z., M.v.d.V., M.O. and M.A.J.H. developed the methodological framework; E.S. performed the EPIC model simulations; M.v.d.V., J.B. and R.S. performed the post-processing of the simulation results; P.M.F.E. performed the GPBT calculations and statistical analyses; and all contributed to the writing of the paper.

Corresponding author

Correspondence to P. M. F. Elshout.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elshout, P., van Zelm, R., Balkovic, J. et al. Greenhouse-gas payback times for crop-based biofuels. Nature Clim Change 5, 604–610 (2015). https://doi.org/10.1038/nclimate2642

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate2642

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing