Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Biomimetic spinning of artificial spider silk from a chimeric minispidroin

Abstract

Herein we present a chimeric recombinant spider silk protein (spidroin) whose aqueous solubility equals that of native spider silk dope and a spinning device that is based solely on aqueous buffers, shear forces and lowered pH. The process recapitulates the complex molecular mechanisms that dictate native spider silk spinning and is highly efficient; spidroin from one liter of bacterial shake-flask culture is enough to spin a kilometer of the hitherto toughest as-spun artificial spider silk fiber.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Biomimetic spinning of artificial spider silk.
Figure 2: pH-dependent assembly and spinning of NT2RepCT.

Similar content being viewed by others

Accession codes

Accessions

European Nucleotide Archive

NCBI Reference Sequence

References

  1. Askarieh, G. et al. Nature 465, 236–238 (2010).

    Article  CAS  Google Scholar 

  2. Hagn, F. et al. Nature 465, 239–242 (2010).

    Article  CAS  Google Scholar 

  3. Zhang, H. et al. Prep. Biochem. Biotechnol. 46, 552–558 (2016).

    Article  CAS  Google Scholar 

  4. Copeland, C.G., Bell, B.E., Christensen, C.D. & Lewis, R.V. ACS Biomater. Sci. Eng. 1, 577–584 (2015).

    Article  CAS  Google Scholar 

  5. Lin, Z., Deng, Q., Liu, X.Y. & Yang, D. Adv. Mater. 25, 1216–1220 (2013).

    Article  CAS  Google Scholar 

  6. Adrianos, S.L. et al. Biomacromolecules 14, 1751–1760 (2013).

    Article  CAS  Google Scholar 

  7. Xu, L., Rainey, J.K., Meng, Q. & Liu, X.Q. PLoS One 7, e50227 (2012).

    Article  CAS  Google Scholar 

  8. Albertson, A.E., Teulé, F., Weber, W., Yarger, J.L. & Lewis, R.V. J. Mech. Behav. Biomed. Mater. 29, 225–234 (2014).

    Article  CAS  Google Scholar 

  9. Xia, X.X. et al. Proc. Natl. Acad. Sci. USA 107, 14059–14063 (2010).

    Article  CAS  Google Scholar 

  10. Teulé, F., Furin, W.A., Cooper, A.R., Duncan, J.R. & Lewis, R.V. J. Mater. Sci. 42, 8974–8985 (2007).

    Article  Google Scholar 

  11. Stark, M. et al. Biomacromolecules 8, 1695–1701 (2007).

    Article  CAS  Google Scholar 

  12. Rammensee, S., Slotta, U., Scheibel, T. & Bausch, A.R. Proc. Natl. Acad. Sci. USA 105, 6590–6595 (2008).

    Article  CAS  Google Scholar 

  13. Heidebrecht, A. et al. Adv. Mater. 27, 2189–2194 (2015).

    Article  CAS  Google Scholar 

  14. Hijirida, D.H. et al. Biophys. J. 71, 3442–3447 (1996).

    Article  CAS  Google Scholar 

  15. Andersson, M. et al. PLoS Biol. 12, e1001921 (2014).

    Article  Google Scholar 

  16. Kronqvist, N. et al. Nat. Commun. 5, 3254 (2014).

    Article  Google Scholar 

  17. Gaines, W.A., Sehorn, M.G. & Marcotte, W.R. Jr. J. Biol. Chem. 285, 40745–40753 (2010).

    Article  CAS  Google Scholar 

  18. Rising, A. & Johansson, J. Nat. Chem. Biol. 11, 309–315 (2015).

    Article  CAS  Google Scholar 

  19. Gauthier, M., Leclerc, J., Lefèvre, T., Gagné, S.M. & Auger, M. Biomacromolecules 15, 4447–4454 (2014).

    Article  CAS  Google Scholar 

  20. Vollrath, F. & Knight, D.P. Int. J. Biol. Macromol. 24, 243–249 (1999).

    Article  CAS  Google Scholar 

  21. Giesa, T., Perry, C.C. & Buehler, M.J. Biomacromolecules 17, 427–436 (2016).

    Article  CAS  Google Scholar 

  22. Lin, Z., Huang, W., Zhang, J., Fan, J.S. & Yang, D. Proc. Natl. Acad. Sci. USA 106, 8906–8911 (2009).

    Article  CAS  Google Scholar 

  23. Shen, C.L. & Murphy, R.M. Biophys. J. 69, 640–651 (1995).

    Article  CAS  Google Scholar 

  24. Lefèvre, T., Boudreault, S., Cloutier, C. & Pézolet, M. Biomacromolecules 9, 2399–2407 (2008).

    Article  Google Scholar 

  25. Jiang, P. et al. Sci. Rep. 4, 7326 (2014).

    Article  CAS  Google Scholar 

  26. Porter, D., Guan, J. & Vollrath, F. Adv. Mater. 25, 1275–1279 (2013).

    Article  CAS  Google Scholar 

  27. Rising, A., Hjälm, G., Engström, W. & Johansson, J. Biomacromolecules 7, 3120–3124 (2006).

    Article  CAS  Google Scholar 

  28. Lefèvre, T., Rousseau, M.E. & Pézolet, M. Biophys. J. 92, 2885–2895 (2007).

    Article  Google Scholar 

  29. Huang, W. et al. Macromolecules 47, 8107–8114 (2014).

    Article  CAS  Google Scholar 

  30. Ling, S., Qi, Z., Knight, D.P., Shao, Z. & Chen, X. Biomacromolecules 12, 3344–3349 (2011).

    Article  CAS  Google Scholar 

  31. Larson, J.L., Ko, E. & Miranker, A.D. Protein Sci. 9, 427–431 (2000).

    Article  CAS  Google Scholar 

  32. Strohalm, M., Kavan, D., Novák, P., Volný, M. & Havlícek, V. Anal. Chem. 82, 4648–4651 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Holm, the Swedish University of Agricultural Sciences for help with photography, as well as S. Takeuchi and A. Hsiao at the University of Tokyo for introduction into the use of pulled glass capillaries for fiber formation. We also thank F. Palm, Uppsala University, for lending us a microelectrode puller. Q.J. was supported by a stipend from the Chinese Scholarship Council. The Swedish Research Council (grants no. 2014-2408 and 2014-10371 to A.R. and J.J.), CIMED (to J.J.) and FORMAS (2015-629 to A.R.) supported this work.

Author information

Authors and Affiliations

Authors

Contributions

M.A., Q.J., A.A., X.-Y.L., M.L., and P.P. performed the experiments; A.R., J.J., G.R.P., Q.M., C.V.R., M.T., H.H. supplied equipment and expertise; A.R. and J.J. conceived and designed the study; M.A., A.R. and J.J. wrote the manuscript. All authors edited the manuscript.

Corresponding authors

Correspondence to Jan Johansson or Anna Rising.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1 and 2 and Supplementary Figures 1–7. (PDF 819 kb)

Supplementary Table

Source data for Supplementary Figure 7. (XLSX 135 kb)

41589_2017_BFnchembio2269_MOESM590_ESM.mov

Spinning NT2RepCT in a biomimetic spinning device. Fibers form instantaneously as the highly concentrated spinning dope hits the pH 5.0 aqueous buffer. (MOV 23001 kb)

As-spun NT2RepCT fibers can be rolled up in a dry state on a frame. (MOV 11953 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andersson, M., Jia, Q., Abella, A. et al. Biomimetic spinning of artificial spider silk from a chimeric minispidroin. Nat Chem Biol 13, 262–264 (2017). https://doi.org/10.1038/nchembio.2269

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2269

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research