Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inhibitors of Mycobacterium tuberculosis DosRST signaling and persistence

Abstract

The Mycobacterium tuberculosis (Mtb) DosRST two-component regulatory system promotes the survival of Mtb during non-replicating persistence (NRP). NRP bacteria help drive the long course of tuberculosis therapy; therefore, chemical inhibition of DosRST may inhibit the ability of Mtb to establish persistence and thus shorten treatment. Using a DosRST-dependent fluorescent Mtb reporter strain, a whole-cell phenotypic high-throughput screen of a 540,000 compound small-molecule library was conducted. The screen discovered novel inhibitors of the DosRST regulon, including three compounds that were subject to follow-up studies: artemisinin, HC102A and HC103A. Under hypoxia, all three compounds inhibit Mtb-persistence-associated physiological processes, including triacylglycerol synthesis, survival and antibiotic tolerance. Artemisinin functions by disabling the heme-based DosS and DosT sensor kinases by oxidizing ferrous heme and generating heme–artemisinin adducts. In contrast, HC103A inhibits DosS and DosT autophosphorylation activity without targeting the sensor kinase heme.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Discovery of inhibitors of the DosRST pathway.
Figure 2: Transcriptional profiling shows artemisinin, HC102A and HC103A inhibit the core genes of the DosRST regulon during hypoxia.
Figure 3: Artemisinin, HC102A and HC103A inhibit TAG synthesis, survival and isoniazid (INH) tolerance.
Figure 4: Artemisinin directly inhibits DosS and DosT by targeting sensor-kinase heme.
Figure 5: Amino acid substitutions in DosS or DosT promote resistance to artemisinin.
Figure 6: HC103A inhibits DosS and DosT autophosphorylation.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

Referenced accessions

Protein Data Bank

References

  1. Gengenbacher, M. & Kaufmann, S.H. Mycobacterium tuberculosis: success through dormancy. FEMS Microbiol. Rev. 36, 514–532 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Baker, J.J., Johnson, B.K. & Abramovitch, R.B. Slow growth of Mycobacterium tuberculosis at acidic pH is regulated by phoPR and host-associated carbon sources. Mol. Microbiol. 94, 56–69 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Wayne, L.G. & Sohaskey, C.D. Nonreplicating persistence of Mycobacterium tuberculosis. Annu. Rev. Microbiol. 55, 139–163 (2001).

    CAS  PubMed  Google Scholar 

  4. Betts, J.C., Lukey, P.T., Robb, L.C., McAdam, R.A. & Duncan, K. Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol. Microbiol. 43, 717–731 (2002).

    CAS  PubMed  Google Scholar 

  5. Boon, C. & Dick, T. Mycobacterium bovis BCG response regulator essential for hypoxic dormancy. J. Bacteriol. 184, 6760–6767 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Park, H.D. et al. Rv3133c/dosR is a transcription factor that mediates the hypoxic response of Mycobacterium tuberculosis. Mol. Microbiol. 48, 833–843 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Voskuil, M.I. et al. Inhibition of respiration by nitric oxide induces a Mycobacterium tuberculosis dormancy program. J. Exp. Med. 198, 705–713 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Galagan, J.E. et al. The Mycobacterium tuberculosis regulatory network and hypoxia. Nature 499, 178–183 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Ioanoviciu, A., Meharenna, Y.T., Poulos, T.L. & Ortiz de Montellano, P.R. DevS oxy complex stability identifies this heme protein as a gas sensor in Mycobacterium tuberculosis dormancy. Biochemistry 48, 5839–5848 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Vos, M.H. et al. Ultrafast ligand dynamics in the heme-based GAF sensor domains of the histidine kinases DosS and DosT from Mycobacterium tuberculosis. Biochemistry 51, 159–166 (2012).

    CAS  PubMed  Google Scholar 

  11. Kumar, A., Toledo, J.C., Patel, R.P., Lancaster, J.R. Jr. & Steyn, A.J. Mycobacterium tuberculosis DosS is a redox sensor and DosT is a hypoxia sensor. Proc. Natl. Acad. Sci. USA 104, 11568–11573 (2007).

    CAS  PubMed  Google Scholar 

  12. Honaker, R.W., Leistikow, R.L., Bartek, I.L. & Voskuil, M.I. Unique roles of DosT and DosS in DosR regulon induction and Mycobacterium tuberculosis dormancy. Infect. Immun. 77, 3258–3263 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Leistikow, R.L. et al. The Mycobacterium tuberculosis DosR regulon assists in metabolic homeostasis and enables rapid recovery from nonrespiring dormancy. J. Bacteriol. 192, 1662–1670 (2010).

    CAS  PubMed  Google Scholar 

  14. Converse, P.J. et al. Role of the dosR–dosS two-component regulatory system in Mycobacterium tuberculosis virulence in three animal models. Infect. Immun. 77, 1230–1237 (2009).

    CAS  PubMed  Google Scholar 

  15. Gautam, U.S. et al. DosS Is required for the complete virulence of mycobacterium tuberculosis in mice with classical granulomatous lesions. Am. J. Respir. Cell Mol. Biol. 52, 708–716 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Mehra, S. et al. The DosR regulon modulates adaptive immunity and is essential for Mycobacterium tuberculosis persistence. Am. J. Respir. Crit. Care Med. 191, 1185–1196 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Baek, S.H., Li, A.H. & Sassetti, C.M. Metabolic regulation of mycobacterial growth and antibiotic sensitivity. PLoS Biol. 9, e1001065 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. VanderVen, B.C. et al. Novel inhibitors of cholesterol degradation in Mycobacterium tuberculosis reveal how the bacterium's metabolism is constrained by the intracellular environment. PLoS Pathog. 11, e1004679 (2015).

    PubMed  PubMed Central  Google Scholar 

  19. Rasko, D.A. et al. Targeting QseC signaling and virulence for antibiotic development. Science 321, 1078–1080 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Rasko, D.A. & Sperandio, V. Anti-virulence strategies to combat bacteria-mediated disease. Nat. Rev. Drug Discov. 9, 117–128 (2010).

    CAS  PubMed  Google Scholar 

  21. Anthouard, R. & DiRita, V.J. Small-molecule inhibitors of toxT expression in Vibrio cholerae. MBio 4, e00403–13 (2013).

    PubMed  PubMed Central  Google Scholar 

  22. Ng, W.L., Perez, L., Cong, J., Semmelhack, M.F. & Bassler, B.L. Broad spectrum pro-quorum-sensing molecules as inhibitors of virulence in vibrios. PLoS Pathog. 8, e1002767 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Johnson, B.K. et al. The carbonic anhydrase inhibitor ethoxzolamide inhibits the Mycobacterium tuberculosis PhoPR regulon and Esx-1 secretion and attenuates virulence. Antimicrob. Agents Chemother. 59, 4436–4445 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Tan, S., Sukumar, N., Abramovitch, R.B., Parish, T. & Russell, D.G. Mycobacterium tuberculosis responds to chloride and pH as synergistic cues to the immune status of its host cell. PLoS Pathog. 9, e1003282 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Johnson, B.K., Scholz, M.B., Teal, T.K. & Abramovitch, R.B. SPARTA: simple program for automated reference-based bacterial RNA–seq transcriptome analysis. BMC Bioinformatics 17, 66 (2016).

    PubMed  PubMed Central  Google Scholar 

  26. Taneja, N.K., Dhingra, S., Mittal, A., Naresh, M. & Tyagi, J.S. Mycobacterium tuberculosis transcriptional adaptation, growth arrest and dormancy phenotype development is triggered by vitamin C. PLoS One 5, e10860 (2010).

    PubMed  PubMed Central  Google Scholar 

  27. Deb, C. et al. A novel in vitro multiple-stress dormancy model for Mycobacterium tuberculosis generates a lipid-loaded, drug-tolerant, dormant pathogen. PLoS One 4, e6077 (2009).

    PubMed  PubMed Central  Google Scholar 

  28. Mak, P.A. et al. A high-throughput screen to identify inhibitors of ATP homeostasis in non-replicating Mycobacterium tuberculosis. ACS Chem. Biol. 7, 1190–1197 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Krishna, S., Bustamante, L., Haynes, R.K. & Staines, H.M. Artemisinins: their growing importance in medicine. Trends Pharmacol. Sci. 29, 520–527 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Selmeczi, K., Robert, A., Claparols, C. & Meunier, B. Alkylation of human hemoglobin A0 by the antimalarial drug artemisinin. FEBS Lett. 556, 245–248 (2004).

    CAS  PubMed  Google Scholar 

  31. Robert, A., Dechy-Cabaret, O., Cazelles, J. & Meunier, B. From mechanistic studies on artemisinin derivatives to new modular antimalarial drugs. Acc. Chem. Res. 35, 167–174 (2002).

    CAS  PubMed  Google Scholar 

  32. Ioanoviciu, A., Yukl, E.T., Moënne-Loccoz, P. & de Montellano, P.R. DevS, a heme-containing two-component oxygen sensor of Mycobacterium tuberculosis. Biochemistry 46, 4250–4260 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Cho, H.Y., Cho, H.J., Kim, M.H. & Kang, B.S. Blockage of the channel to heme by the E87 side chain in the GAF domain of Mycobacterium tuberculosis DosS confers the unique sensitivity of DosS to oxygen. FEBS Lett. 585, 1873–1878 (2011).

    CAS  PubMed  Google Scholar 

  34. Podust, L.M., Ioanoviciu, A. & Ortiz de Montellano, P.R. 2.3 A X-ray structure of the heme-bound GAF domain of sensory histidine kinase DosT of Mycobacterium tuberculosis. Biochemistry 47, 12523–12531 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Cho, H.Y., Cho, H.J., Kim, Y.M., Oh, J.I. & Kang, B.S. Structural insight into the heme-based redox sensing by DosS from Mycobacterium tuberculosis. J. Biol. Chem. 284, 13057–13067 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Sousa, E.H., Tuckerman, J.R., Gonzalez, G. & Gilles-Gonzalez, M.A. DosT and DevS are oxygen-switched kinases in Mycobacterium tuberculosis. Protein Sci. 16, 1708–1719 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Messori, L. et al. The reaction of artemisinins with hemoglobin: a unified picture. Bioorg. Med. Chem. 14, 2972–2977 (2006).

    CAS  PubMed  Google Scholar 

  38. Zhang, S. & Gerhard, G.S. Heme activates artemisinin more efficiently than hemin, inorganic iron, or hemoglobin. Bioorg. Med. Chem. 16, 7853–7861 (2008).

    CAS  PubMed  Google Scholar 

  39. Robert, A., Coppel, Y. & Meunier, B. Alkylation of heme by the antimalarial drug artemisinin. Chem. Commun. (Camb.) (5): 414–415 (2002).

  40. Sivaramakrishnan, S. & de Montellano, P.R. The DosS-DosT/DosR mycobacterial sensor system. Biosensors (Basel) 3, 259–282 (2013).

    CAS  Google Scholar 

  41. Roberts, D.M., Liao, R.P., Wisedchaisri, G., Hol, W.G. & Sherman, D.R. Two sensor kinases contribute to the hypoxic response of Mycobacterium tuberculosis. J. Biol. Chem. 279, 23082–23087 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Koul, A. et al. Diarylquinolines are bactericidal for dormant mycobacteria as a result of disturbed ATP homeostasis. J. Biol. Chem. 283, 25273–25280 (2008).

    CAS  PubMed  Google Scholar 

  43. Pethe, K. et al. Discovery of Q203, a potent clinical candidate for the treatment of tuberculosis. Nat. Med. 19, 1157–1160 (2013).

    CAS  PubMed  Google Scholar 

  44. Li, W. et al. Novel insights into the mechanism of inhibition of MmpL3, a target of multiple pharmacophores in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 58, 6413–6423 (2014).

    PubMed  PubMed Central  Google Scholar 

  45. Gupta, R.K., Thakur, T.S., Desiraju, G.R. & Tyagi, J.S. Structure-based design of DevR inhibitor active against nonreplicating Mycobacterium tuberculosis. J. Med. Chem. 52, 6324–6334 (2009).

    CAS  PubMed  Google Scholar 

  46. Rybniker, J. et al. Anticytolytic screen identifies inhibitors of mycobacterial virulence protein secretion. Cell Host Microbe 16, 538–548 (2014).

    CAS  PubMed  Google Scholar 

  47. Boshoff, H.I. et al. The transcriptional responses of Mycobacterium tuberculosis to inhibitors of metabolism: novel insights into drug mechanisms of action. J. Biol. Chem. 279, 40174–40184 (2004).

    CAS  PubMed  Google Scholar 

  48. Miller, M.J. et al. Design, synthesis, and study of a mycobactin–artemisinin conjugate that has selective and potent activity against tuberculosis and malaria. J. Am. Chem. Soc. 133, 2076–2079 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Kim, M.J., Park, K.J., Ko, I.J., Kim, Y.M. & Oh, J.I. Different roles of DosS and DosT in the hypoxic adaptation of Mycobacteria. J. Bacteriol. 192, 4868–4875 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Sander, P., Springer, B. & Bottger, E.C. Gene replacement in Mycobacterium tuberculosis and Mycobacterium bovis BCG using rpsL as a dominant negative selectable marker. Methods Mol. Med. 54, 93–104 (2001).

    CAS  PubMed  Google Scholar 

  51. Abramovitch, R.B., Rohde, K.H., Hsu, F.F. & Russell, D.G. aprABC: a Mycobacterium tuberculosis complex-specific locus that modulates pH-driven adaptation to the macrophage phagosome. Mol. Microbiol. 80, 678–694 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhang, J.H., Chung, T.D. & Oldenburg, K.R. A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J. Biomol. Screen. 4, 67–73 (1999).

    CAS  PubMed  Google Scholar 

  53. Johnson, B.K. & Abramovitch, R.B. Macrophage infection models for Mycobacterium tuberculosis. Methods Mol. Biol. 1285, 329–341 (2015).

    CAS  PubMed  Google Scholar 

  54. Rohde, K.H., Abramovitch, R.B. & Russell, D.G. Mycobacterium tuberculosis invasion of macrophages: linking bacterial gene expression to environmental cues. Cell Host Microbe 2, 352–364 (2007).

    CAS  PubMed  Google Scholar 

  55. Schneider, C.A., Rasband, W.S. & Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

High-throughput screening libraries and their preparation was supported by the New England Regional Center of Excellence (U54 AI057159) and the Institute of Chemistry and Cell Biology (ICCB) at Harvard Medical School. M. Farrugia and B. Hausinger provided support with the UV–visible spectroscopy experiments. The MSU RTSF provided technical support for the RNA–seq library preparation and sequencing. The Vahlteich Medicinal Chemistry Core is grateful for ongoing support from the Ella and Hans Vahlteich Fund and Beverly Vahlteich Delaney. We thank members of the Abramovitch lab for critical reading of the manuscript. This project was supported by start-up funding from Michigan State University and AgBioResearch, a grant from the NIH-NIAID (R21AI105867), and Grand Challenges Explorations awards (OPP1059227 and OPP1119065) from the Bill & Melinda Gates Foundation.

Author information

Authors and Affiliations

Authors

Contributions

H.Z., C.J.C., B.K.J. and R.B.A. conducted high throughput screen and follow-up experiments. M.W. and S.D.L. synthesized chemical compounds; K.J.-M. contributed reagents. P.D.K. performed structural modeling; H.Z. and R.B.A. wrote the manuscript.

Corresponding author

Correspondence to Robert B Abramovitch.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1 and 2 and Supplementary Figures 1–8 (PDF 7417 kb)

Supplementary Dataset 1

Differential gene expression data of WT Mtb treated with inhibitors and the DMSO treated DosR mutant. (XLSX 165 kb)

Supplementary Dataset 2

Differential gene expression data of the DosR mutant treated with the inhibitors. (XLSX 81 kb)

Supplementary Dataset 3

Complete gene expression tables for transcriptional profiling experiments. (XLSX 3320 kb)

Supplementary Note

Synthetic procedures. (PDF 103 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, H., Colvin, C., Johnson, B. et al. Inhibitors of Mycobacterium tuberculosis DosRST signaling and persistence. Nat Chem Biol 13, 218–225 (2017). https://doi.org/10.1038/nchembio.2259

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2259

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology