Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Main-chain metallopolymers at the static–dynamic boundary based on nickelocene

Abstract

Interactions between metal ions and ligands in metal-containing polymers involve two bonding extremes: persistent covalent bonding, in which the polymers are essentially static in nature, or labile coordination bonding, which leads to dynamic supramolecular materials. Main-chain polymetallocenes based on ferrocene and cobaltocene fall into the former category because of the presence of strong metal–cyclopentadienyl bonds. Herein, we describe a main-chain polynickelocene—formed by ring-opening polymerization of a moderately strained [3]nickelocenophane monomer—that can be switched between static and dynamic states because of the relatively weak nickel–cyclopentadienyl ligand interactions. This is illustrated by the observation that, at a low concentration or at an elevated temperature in a coordinating or polar solvent, depolymerization of the polynickelocene occurs. A study of this dynamic polymer–monomer equilibrium by 1H NMR spectroscopy allowed the determination of the associated thermodynamic parameters. Microrheology data, however, indicated that under similar conditions the polynickelocene is considered to be static on the shorter rheological timescale.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Summary of monomer [n]metallocenophanes and polymetallocenes.
Figure 2: The stacked 1H NMR spectra (500 MHz, d5-pyridine, 25 °C) show the effect of the initial monomer concentration on the conversion of tricarba[3]nickelocenophane monomer 5 into polynickelocene 7.
Figure 3: Example 1H NMR spectra that show the presence of cyclic oligomers 6x in equilibrium mixtures of monomer 5 and polymer 7.
Figure 4: Stacked 1H NMR spectra (500 MHz, d5-pyridine) that show the effect of temperature on the reversible conversion of monomer 5 into polymer 7.
Figure 5: Thermodynamic ROP parameters and influence of metallocene ring tilt in [n]metallocenophanes.

Similar content being viewed by others

References

  1. Whittell, G. R., Hager, M. D., Schubert, U. S. & Manners, I. Functional soft materials from metallopolymers and metallosupramolecular polymers. Nat. Mater. 10, 176–188 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Xiang, J., Ho, C. L. & Wong, W. Y. Metallopolymers for energy production, storage and conservation. Polym. Chem. 6, 6905–6930 (2015).

    Article  CAS  Google Scholar 

  3. Yan, Y., Zhang, J., Ren, L. & Tang, C. Metal-containing and related polymers for biomedical applications. Chem. Soc. Rev. 45, 5232–5263 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. De Greef, T. F. A. et al. Supramolecular polymerization. Chem. Rev. 109, 5687–5754 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Yang, L., Tan, X., Wang, Z. & Zhang, X. Supramolecular polymers: historical development, preparation, characterization, and functions. Chem. Rev. 115, 7196–7239 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Burnworth, M. et al. Optically healable supramolecular polymers. Nature 472, 334–337 (2011).

    Article  CAS  Google Scholar 

  7. Bode, S. et al. Self-healing polymer coatings based on crosslinked metallosupramolecular copolymers. Adv. Mater. 25, 1634–1638 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Wu, F.-I. et al. Efficient white-electrophosphorescent devices based on a single polyfluorene copolymer. Adv. Funct. Mater. 17, 1085–1092 (2007).

    Article  CAS  Google Scholar 

  9. Stanley, J. M. & Holliday, B. J. Luminescent lanthanide-containing metallopolymers. Coord. Chem. Rev. 256, 1520–1530 (2012).

    Article  CAS  Google Scholar 

  10. Tse, C. W. et al. Layer-by-layer deposition of rhenium-containing hyperbranched polymers and fabrication of photovoltaic cells. Chem. Eur. J. 13, 328–335 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Wong, W.-Y. & Ho, C.-L. Organometallic photovoltaics: a new and versatile approach for harvesting solar energy using conjugated polymetallaynes. Acc. Chem. Res. 43, 1246–1256 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Kim, H.-J., Lee, J.-H. & Lee, M. Stimuli-responsive gels from reversible coordination polymers. Angew. Chem. Int. Ed. 44, 5810–5814 (2005).

    Article  CAS  Google Scholar 

  13. Astruc, D., Ornelas, C. & Ruiz, J. Metallocenyl dendrimers and their applications in molecular electronics, sensing, and catalysis. Acc. Chem. Res. 41, 841–856 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Collot, J. et al. Artificial metalloenzymes for enantioselective catalysis based on biotin–avidin. J. Am. Chem. Soc. 125, 9030–9031 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Choi, T.-L. et al. Synthesis and nonvolatile memory behavior of redox-active conjugated polymer-containing ferrocene. J. Am. Chem. Soc. 129, 9842–9843 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Zhang, J. et al. Antimicrobial metallopolymers and their bioconjugates with conventional antibiotics against multidrug-resistant bacteria. J. Am. Chem. Soc. 136, 4873–4876 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. Rider, D. A. et al. Nanostructured magnetic thin films from organometallic block copolymers: pyrolysis of self-assembled polystyrene-block-poly(ferrocenylethylmethylsilane). ACS Nano 2, 263–270 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Korczagin, I., Lammertink, R. G. H., Hempenius, M. A., Golze, S. & Vancso, G. J. Surface nano- and microstructuring with organometallic polymers. Adv. Polym. Sci. 200, 91–117 (2006).

    Article  CAS  Google Scholar 

  19. Wang, Y. L., Salmon, L., Ruiz, J. & Astruc, D. Metallodendrimers in three oxidation states with electronically interacting metals and stabilization of size-selected gold nanoparticles. Nat. Commun. 5, 3489 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Herbert, D. E., Mayer, U. F. J. & Manners, I. Strained metallocenophanes and related organometallic rings containing π-hydrocarbon ligands and transition-metal centers. Angew. Chem. Int. Ed. 46, 5060–5081 (2007).

    Article  CAS  Google Scholar 

  21. Musgrave, R. A., Russell, A. D. & Manners, I. Strained ferrocenophanes. Organometallics 32, 5654–5667 (2013).

    Article  CAS  Google Scholar 

  22. Braunschweig, H. & Kupfer, T. Non-iron [n]metalloarenophanes. Acc. Chem. Res. 43, 455–465 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Tamm, M . Synthesis and reactivity of functionalized cycloheptatrienyl–cyclopentadienyl sandwich complexes. Chem. Commun. 3089–3100 (2008).

  24. Bhattacharjee, H. & Müller, J. Metallocenophanes bridged by group 13 elements. Coord. Chem. Rev. 314, 114–133 (2016).

    Article  CAS  Google Scholar 

  25. Mayer, U. F. J., Gilroy, J. B., O'Hare, D. & Manners, I. Ring-opening polymerization of 19-electron [2]cobaltocenophanes: a route to high-molecular-weight, water-soluble polycobaltocenium polyelectrolytes. J. Am. Chem. Soc. 131, 10382–10383 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Qiu, H., Gilroy, J. B. & Manners, I. DNA-induced chirality in water-soluble poly(cobaltoceniumethylene). Chem. Commun. 49, 42–44 (2013).

    Article  CAS  Google Scholar 

  27. Braunschweig, H. et al. Synthesis of a paramagnetic polymer by ring-opening polymerization of a strained [1]vanadoarenophane. Angew. Chem. Int. Ed. 47, 3826–3829 (2008).

    Article  CAS  Google Scholar 

  28. Braunschweig, H. et al. A paramagnetic heterobimetallic polymer: synthesis, reactivity, and ring-opening polymerization of tin-bridged homo- and heteroleptic vanadoarenophanes. J. Am. Chem. Soc. 137, 1492–1500 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. Baljak, S. et al. Ring-opening polymerization of a strained [3]nickelocenophane: a route to polynickelocenes, a class of S = 1 metallopolymers. J. Am. Chem. Soc. 136, 5864–5867 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Long, N. J. Metallocenes: An Introduction to Sandwich Complexes (Wiley-Blackwell, 1998).

    Google Scholar 

  31. Tel'noi, V. I. & Rabinovich, I. B. Thermochemistry of organic compounds of transition metals. Russ. Chem. Rev. 46, 1337–1367 (1977).

    Article  CAS  Google Scholar 

  32. Inkpen, M. S. et al. Oligomeric ferrocene rings. Nat. Chem. 8, 825–830 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Herbert, D. E. et al. Redox-active metallomacrocycles and cyclic metallopolymers: photocontrolled ring-opening oligomerization and polymerization of silicon-bridged [1]ferrocenophanes using substitutionally-labile Lewis bases as initiators. J. Am. Chem. Soc. 131, 14958–14968 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Semlyen, J. A. Ring-chain equilibria and the conformations of polymer chains. Adv. Polym. Sci. 21, 41–75 (1976).

    Article  CAS  Google Scholar 

  35. Duda, A. & Kowalski, A. in Handbook of Ring-Opening Polymerization (eds Dubois, P., Coulembier, O. & Raquez, J.-M.) Ch. 1 (Wiley-VCH, 2009).

    Google Scholar 

  36. Ohta, H. et al. A N-heterocyclic carbene Ni(II) complex bearing bis(cyclopentadienyl) ligands as a precatalyst for the dehydrogenative silylation of alcohols with hydrosilanes. Tetrahedron Lett. 56, 2910–2912 (2015).

    Article  CAS  Google Scholar 

  37. Cross, R. J. & Wardle, R. Cyclopentadienyls of palladium and platinum. J. Chem. Soc. A 2000–2007 (1971).

  38. Herberich, G. E., Hausmann, I., Hessner, B. & Negele, M. Dehydrating complex-formation of borolenes with (cyclopentadienyl)nickel complexes. J. Organomet. Chem. 362, 259–264 (1989).

    Article  CAS  Google Scholar 

  39. Heinicke, J. et al. Metalated 1,3-azaphospholes: η1-(1H-1,3-benzazaphosphole-P)M(CO)5 and μ2-[(1,3-benzazaphospholide-P)(cyclopentadienide)nickel] complexes. Z. Anorg. Allg. Chem. 628, 2869–2876 (2002).

    Article  CAS  Google Scholar 

  40. Kuhn, N., Winter, M. & Zimmer, E. Coordination of trifunctional phosphane ligands in cyclopentadienylnickel complexes. J. Organomet. Chem. 344, 401–409 (1988).

    Article  CAS  Google Scholar 

  41. Odian, G. Principles of Polymerization Ch. 7 (John Wiley & Sons, 2004).

    Book  Google Scholar 

  42. Chu, B. & Hsiao, B. S. Small-angle X-ray scattering of polymers. Chem. Rev. 101, 1727–1761 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Wall, L. A. Energetics of polymer decompositions. II. Soc. Plastic Eng. J. 16, 1031–1035 (1960).

    CAS  Google Scholar 

  44. Wall, L. A. Polymer decomposition: thermodynamics, mechanisms, and energetics. Soc. Plastic Eng. J. 16, 810–814 (1960).

    CAS  Google Scholar 

  45. McCormick, H. W. Ceiling temperature of alpha-methylstyrene. J. Polym. Sci. 25, 488–490 (1957).

    Article  CAS  Google Scholar 

  46. Cook, R. E., Dainton, F. S. & Ivin, K. J. Effect of structure on polymerizability: olefin polysulfone formation. J. Polym. Sci. 29, 549–556 (1958).

    Article  CAS  Google Scholar 

  47. Tuba, R. & Grubbs, R. H. Ruthenium catalyzed equilibrium ring-opening metathesis polymerization of cyclopentene. Polym. Chem. 4, 3959–3962 (2013).

    Article  CAS  Google Scholar 

  48. Kubisa, P. & Penczek, S. Cationic activated monomer polymerization of heterocyclic monomers. Prog. Polym. Sci. 24, 1409–1437 (1999).

    Article  CAS  Google Scholar 

  49. Rulkens, R. et al. Highly strained, ring-tilted [1]ferrocenophanes containing group 16 elements in the bridge: synthesis, structures, and ring-opening oligomerization and polymerization of [1]thia- and [1]selenaferrocenophanes. J. Am. Chem. Soc. 119, 10976–10986 (1997).

    Article  CAS  Google Scholar 

  50. Resendes, R. et al. Tuning the strain and polymerizability of organometallic rings: the synthesis, structure, and ring-opening polymerization behavior of [2]ferrocenophanes with C–Si, C–P, and C–S bridges. J. Am. Chem. Soc. 123, 2116–2126 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Khozeimeh Sarbisheh, E., Bhattacharjee, H., Cao, M. P. T., Zhu, J. & Müller, J. How strained are [1]ferrocenophanes? Organometallics 36, 614–621 (2017).

    Article  CAS  Google Scholar 

  52. Green, J. C. Bent metallocenes revisited. Chem. Soc. Rev. 27, 263–271 (1998).

    Article  CAS  Google Scholar 

  53. Turner, M. S., Marques, C. & Cates, M. E. Dynamics of wormlike micelles: the ‘bond-interchange’ reaction scheme. Langmuir 9, 695–701 (1993).

    Article  CAS  Google Scholar 

  54. Vermonden, T. et al. Linear rheology of water-soluble reversible neodymium(III) coordination polymers. J. Am. Chem. Soc. 126, 15802–15808 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Li, C. et al. Neutral molecule receptor systems using ferrocene's ‘atomic ball bearing’ character as the flexible element. J. Am. Chem. Soc. 119, 1609–1618 (1997).

    Article  CAS  Google Scholar 

  56. Allcock, H. R., McDonnell, G. S., Riding, G. H. & Manners, I. Influence of different organic side groups on the thermal behavior of polyphosphazenes: random chain cleavage, depolymerization, and pyrolytic cross-linking. Chem. Mater. 2, 425–432 (1990).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

R.A.M., A.D.R., G.R.W. and I.M. thank the Engineering and Physical Sciences Research Council (EPSRC) for funding. D.W.H. is supported by a EPSRC doctoral training centre grant [EP/G036780/1]. The authors thank B. MacCreath for assistance in performing the DLS microrheology measurements.

Author information

Authors and Affiliations

Authors

Contributions

R.A.M., A.D.R. and I.M. devised the project. R.A.M. carried out the experiments with assistance from A.D.R. The SAXS data were collected and analysed by D.W.H. Microrheology experiments were performed by R.A.M. and G.R.W. Paramagnetic NMR experiments were designed with assistance from P.G.L., mass spectrometry was performed by P.J.G. and computational chemistry was performed by J.C.G. The manuscript was written by R.A.M. with input from A.D.R., G.R.W. and I.M. The project was supervised by I.M. with input from G.R.W.

Corresponding author

Correspondence to Ian Manners.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1982 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Musgrave, R., Russell, A., Hayward, D. et al. Main-chain metallopolymers at the static–dynamic boundary based on nickelocene. Nature Chem 9, 743–750 (2017). https://doi.org/10.1038/nchem.2743

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2743

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing