Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Simple peptides derived from the ribosomal core potentiate RNA polymerase ribozyme function

Abstract

The emergence of functional interactions between nucleic acids and polypeptides was a key transition in the origin of life and remains at the heart of all biology. However, how and why simple non-coded peptides could have become critical for RNA function is unclear. Here, we show that putative ancient peptide segments from the cores of both ribosomal subunits enhance RNA polymerase ribozyme (RPR) function, as do derived homopolymeric peptides comprising lysine or the non-proteinogenic lysine analogues ornithine or, to a lesser extent, diaminobutyric acid, irrespective of chirality or chiral purity. Lysine decapeptides enhance RPR function by promoting holoenzyme assembly through primer–template docking, accelerate RPR evolution, and allow RPR-catalysed RNA synthesis at near physiological (≥1 mM) Mg2+ concentrations, enabling templated RNA synthesis within membranous protocells. Our results outline how compositionally simple, mixed-chirality peptides may have augmented the functional potential of early RNAs and promoted the emergence of the first protocells.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ribosomal peptides enhance the activity of an artificial RPR.
Figure 2: RPR activation by homopolymeric peptides.
Figure 3: K10 and [Mg2+] dependence of RPR activity by Z and the evolved 4M.
Figure 4: Robust RNA synthesis during long incubations.
Figure 5: Ribozyme-catalysed RNA synthesis in phospholipid protocells.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Gesteland, R., Cech, T. & Atkins, J. (eds) The RNA World 3rd edn (Cold Spring Harbor Laboratory, 2006).

    Google Scholar 

  2. Szostak, J. W., Bartel, D. P. & Luisi, P. L. Synthesizing life. Nature 409, 387–390 (2001).

    Article  CAS  Google Scholar 

  3. Johnston, W. K., Unrau, P. J., Lawrence, M. S., Glasner, M. E. & Bartel, D. P. RNA-catalyzed RNA polymerization: accurate and general RNA-templated primer extension. Science 292, 1319–1325 (2001).

    Article  CAS  Google Scholar 

  4. Wochner, A., Attwater, J., Coulson, A. & Holliger, P. Ribozyme-catalyzed transcription of an active ribozyme. Science 332, 209–212 (2011)

    Article  CAS  Google Scholar 

  5. Horning, D. P. & Joyce, G. F. Amplification of RNA by an RNA polymerase ribozyme. Proc. Natl Acad. Sci. USA 113, 9786–9791 (2016)

    Article  CAS  Google Scholar 

  6. Attwater, J., Wochner, A. & Holliger, P. In-ice evolution of RNA polymerase ribozyme activity. Nat. Chem. 5, 1011–1018 (2013).

    Article  CAS  Google Scholar 

  7. Attwater, J. et al. Chemical fidelity of an RNA polymerase ribozyme. Chem. Sci. 4, 2804–2814 (2013).

    Article  CAS  Google Scholar 

  8. Muller, U. F. & Bartel, D. P. Improved polymerase ribozyme efficiency on hydrophobic assemblies. RNA 14, 552–562 (2008).

    Article  CAS  Google Scholar 

  9. Attwater, J., Wochner, A., Pinheiro, V. B., Coulson, A. & Holliger, P. Ice as a protocellular medium for RNA replication. Nat. Commun. 1, 1–8 (2010).

    Article  Google Scholar 

  10. Monnard, P. A., Apel, C. L., Kanavarioti, A. & Deamer, D. W. Influence of ionic inorganic solutes on self-assembly and polymerization processes related to early forms of life: implications for a prebiotic aqueous medium. Astrobiology 2, 139–152 (2002).

    Article  CAS  Google Scholar 

  11. Chen, I. A., Salehi-Ashtiani, K. & Szostak, J. W. RNA catalysis in model protocell vesicles. J. Am. Chem. Soc. 127, 13213–13219 (2005).

    Article  CAS  Google Scholar 

  12. Patel, B. H., Percivalle, C., Ritson, D. J., Duffy, C. D. & Sutherland, J. D. Common origins of RNA, protein and lipid precursors in a cyanosulfidic protometabolism. Nat. Chem. 7, 301–307 (2015).

    Article  CAS  Google Scholar 

  13. Valadkhan, S., Mohammadi, A., Jaladat, Y. & Geisler, S. Protein-free small nuclear RNAs catalyze a two-step splicing reaction. Proc. Natl Acad. Sci. USA 106, 11901–11906 (2009).

    Article  CAS  Google Scholar 

  14. Nissen, P., Hansen, J., Ban, N., Moore, P. B. & Steitz, T. A. The structural basis of ribosome activity in peptide bond synthesis. Science 289, 920–930 (2000).

    Article  CAS  Google Scholar 

  15. Guerrier-Takada, C., Gardiner, K., Marsh, T., Pace, N. & Altman, S. The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35, 849–857 (1983).

    Article  CAS  Google Scholar 

  16. Coetzee, T., Herschlag, D. & Belfort, M. Escherichia coli proteins, including ribosomal protein S12, facilitate in vitro splicing of phage T4 introns by acting as RNA chaperones. Genes Dev. 8, 1575–1588 (1994).

    Article  CAS  Google Scholar 

  17. Herschlag, D., Khosla, M., Tsuchihashi, Z. & Karpel, R. L. An RNA chaperone activity of non-specific RNA binding proteins in hammerhead ribozyme catalysis. EMBO J. 13, 2913–2924 (1994).

    Article  CAS  Google Scholar 

  18. Bokov, K. & Steinberg, S. V. A hierarchical model for evolution of 23S ribosomal RNA. Nature 457, 977–980 (2009).

    Article  CAS  Google Scholar 

  19. Hsiao, C., Mohan, S., Kalahar, B. K. & Williams, L. D. Peeling the onion: ribosomes are ancient molecular fossils. Mol. Biol. Evol. 26, 2415–2425 (2009).

    Article  CAS  Google Scholar 

  20. Klein, D. J., Moore, P. B. & Steitz, T. A. The contribution of metal ions to the structural stability of the large ribosomal subunit. RNA 10, 1366–1379 (2004).

    Article  CAS  Google Scholar 

  21. Smith, T. F., Lee, J. C., Gutell, R. R. & Hartman, H. The origin and evolution of the ribosome. Biol. Direct. 3, 16 (2008).

    Article  Google Scholar 

  22. Alva, V., Soding, J. & Lupas, A. N. A vocabulary of ancient peptides at the origin of folded proteins. eLife 4, e09410 (2015).

    Article  Google Scholar 

  23. Voorhees, R. M., Schmeing, T. M., Kelley, A. C. & Ramakrishnan, V. The mechanism for activation of GTP hydrolysis on the ribosome. Science 330, 835–838 (2010).

    Article  CAS  Google Scholar 

  24. DeRouchey, J., Hoover, B. & Rau, D. C. A comparison of DNA compaction by arginine and lysine peptides: a physical basis for arginine rich protarnines. Biochemistry 52, 3000–3009 (2013).

    Article  CAS  Google Scholar 

  25. Wang, Q. S., Cheng, L. K. & Unrau, P. J. Characterization of the B6.61 polymerase ribozyme accessory domain. RNA 17, 469–477 (2011).

    Article  CAS  Google Scholar 

  26. Pinheiro, V. B. et al. Synthetic genetic polymers capable of heredity and evolution. Science 336, 341–344 (2012).

    Article  CAS  Google Scholar 

  27. Attwater, J. & Holliger, P. A synthetic approach to abiogenesis. Nat. Methods 11, 495–498 (2014).

    Article  CAS  Google Scholar 

  28. Engelhart, A. E., Adamala, K. P. & Szostak, J. W. A simple physical mechanism enables homeostasis in primitive cells. Nat. Chem. 8, 448–453 (2016).

    Article  CAS  Google Scholar 

  29. Adamala, K. & Szostak, J. W. Nonenzymatic template-directed RNA synthesis inside model protocells. Science 342, 1098–1100 (2013).

    Article  CAS  Google Scholar 

  30. Kamat, N. P., Tobe, S., Hill, I. T. & Szostak, J. W. Electrostatic localization of RNA to protocell membranes by cationic hydrophobic peptides. Angew. Chem. Int. Ed. 54, 11735–11739 (2015).

    Article  CAS  Google Scholar 

  31. Jia, T. Z., Fahrenbach, A. C., Kamat, N. P., Adamala, K. P. & Szostak, J. W. Oligoarginine peptides slow strand annealing and assist non-enzymatic RNA replication. Nat. Chem. 8, 915–921 (2016).

    Article  CAS  Google Scholar 

  32. Cech, T. R. Evolution of biological catalysis: ribozyme to RNP enzyme. Cold Spring Harb. Symp. Quant. Biol. 74, 11–16 (2009).

    Article  CAS  Google Scholar 

  33. Krupkin, M. et al. A vestige of a prebiotic bonding machine is functioning within the contemporary ribosome. Philos. Trans. R. Soc. Lond. B 366, 2972–2978 (2011).

    Article  CAS  Google Scholar 

  34. Petrov, A. S. et al. History of the ribosome and the origin of translation. Proc. Natl Acad. Sci. USA 112, 15396–15401 (2015).

    Article  CAS  Google Scholar 

  35. Hartman, H. & Smith, T. F. The evolution of the ribosome and the genetic code. Life (Basel) 4, 227–249 (2014).

    CAS  Google Scholar 

  36. Szathmary, E. The origin of the genetic code: amino acids as cofactors in an RNA world. Trends Genet. 15, 223–229 (1999).

    Article  CAS  Google Scholar 

  37. Johnsson, K., Allemann, R. K., Widmer, H. & Benner, S. A. Synthesis, structure and activity of artificial, rationally designed catalytic polypeptides. Nature 365, 530–532 (1993).

    Article  CAS  Google Scholar 

  38. Muller, M. M., Windsor, M. A., Pomerantz, W. C., Gellman, S. H. & Hilvert, D. A rationally designed aldolase foldamer. Angew. Chem. Int. Ed. 48, 922–925 (2009).

    Article  CAS  Google Scholar 

  39. Koga, S., Williams, D. S., Perriman, A. W. & Mann, S. Peptide–nucleotide microdroplets as a step towards a membrane-free protocell model. Nat. Chem. 3, 720–724 (2011).

    Article  CAS  Google Scholar 

  40. Mann, S. Systems of creation: the emergence of life from nonliving matter. Acc. Chem. Res. 45, 2131–2141 (2012).

    Article  CAS  Google Scholar 

  41. Thomen, P. et al. T7 RNA polymerase studied by force measurements varying cofactor concentration. Biophys. J. 95, 2423–2433 (2008).

    Article  CAS  Google Scholar 

  42. Miele, Y., Bánsági, T. Jr, Taylor, A. F., Stano, P. & Rossi, F. in Advances in Artificial Life, Evolutionary Computation and Systems Chemistry Vol. 587 (eds Rossi, F. et al.) Ch. 18, 197–208 (Springer, 2016).

  43. Fujii, S. et al. Liposome display for in vitro selection and evolution of membrane proteins. Nat. Protoc. 9, 1578–1591 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank S. James for assistance with fidelity data processing. This work was supported by postdoctoral fellowships from JSPS (Japanese Society for the Promotion of Science) and HFSP (Human Frontiers Science Program) (S.T.) and by the Medical Research Council (J.A., P.H.; programme no. MC_U105178804).

Author information

Authors and Affiliations

Authors

Contributions

S.T. and P.H. conceived and designed the experiments. S.T. performed all experiments together with J.A. for selection design, fidelity measurement and peptide assays. All authors discussed the results and jointly wrote and commented on the manuscript.

Corresponding author

Correspondence to Philipp Holliger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 11883 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tagami, S., Attwater, J. & Holliger, P. Simple peptides derived from the ribosomal core potentiate RNA polymerase ribozyme function. Nature Chem 9, 325–332 (2017). https://doi.org/10.1038/nchem.2739

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2739

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing