Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A stable compound of helium and sodium at high pressure

Abstract

Helium is generally understood to be chemically inert and this is due to its extremely stable closed-shell electronic configuration, zero electron affinity and an unsurpassed ionization potential. It is not known to form thermodynamically stable compounds, except a few inclusion compounds. Here, using the ab initio evolutionary algorithm USPEX and subsequent high-pressure synthesis in a diamond anvil cell, we report the discovery of a thermodynamically stable compound of helium and sodium, Na2He, which has a fluorite-type structure and is stable at pressures >113 GPa. We show that the presence of He atoms causes strong electron localization and makes this material insulating. This phase is an electride, with electron pairs localized in interstices, forming eight-centre two-electron bonds within empty Na8 cubes. We also predict the existence of Na2HeO with a similar structure at pressures above 15 GPa.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Thermodynamics of the Na–He system, which shows the enthalpic stability between Na2He and the mixture of elemental Na and He.
Figure 2: Crystal structure of Na2He at 300 GPa.
Figure 3: Experimental data on Na2He: XRD at 140 GPa.
Figure 4: Electronic structure of Na2He.

Similar content being viewed by others

References

  1. Stevenson, D. J. Metallic helium in massive planets. Proc. Natl Acad. Sci. USA 105, 11035–11036 (2008).

    Article  Google Scholar 

  2. Huheey, J. E., Keiter, E. A., Keiter, R. L. & Medhi, O. K. Inorganic Chemistry: Principles of Structure and Reactivity (Harper & Row, 1983).

    Google Scholar 

  3. Hotop, H. & Lineberger, W. C. Binding energies in atomic negative ions: II. J. Phys. Chem. Ref. Data 14, 731–750 (1985).

    Article  CAS  Google Scholar 

  4. Hiby, J. W. Massenspektrographische untersuchungen an wasserstoff- und heliumkanalstrahlen (H3+, H2, HeH+, HeD+, He). Annalen der Physik 426, 473–487 (1939).

    Article  Google Scholar 

  5. Wong, M. W. Prediction of a metastable helium compound: HHeF. J. Am. Chem. Soc. 122, 6289–6290 (2000).

    Article  CAS  Google Scholar 

  6. Grochala, W. On chemical bonding between helium and oxygen. Pol. J. Chem. 83, 87–122 (2009).

    CAS  Google Scholar 

  7. Tariq, N., Taisan, N. A., Singh, V. & Weinstein, J. D. Spectroscopic detection of the LiHe molecule. Phys. Rev. Lett. 110, 153201 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Loubeyre, P., Jean-Louis, M., LeToullec, R. & Charon-Gérard, L. High pressure measurements of the He-Ne binary phase diagram at 296 K: evidence for the stability of a stoichiometric Ne(He)2 solid. Phys. Rev. Lett. 70, 178–181 (1993).

    Article  CAS  PubMed  Google Scholar 

  9. Liu, H., Yao, Y. & Klug, D. D. Stable structures of He and H2O at high pressure. Phys. Rev. B 91, 014102 (2015).

    Article  CAS  Google Scholar 

  10. Hermann, A. & Schwerdtfeger, P. Xenon suboxides stable under pressure. J. Phys. Chem. Lett. 5, 4336–4342 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Zhu, Q. et al. Stability of xenon oxides at high pressures. Nat. Chem. 5, 61–65 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Miao, M.-s. et al. Anionic chemistry of noble gases: formation of Mg–NG (NG = Xe, Kr, Ar) compounds under pressure. J. Am. Chem. Soc. 137, 14122–14128 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Ma, Y. et al. Transparent dense sodium. Nature 458, 182–185 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Zhang, W. et al. Unexpected stable stoichiometries of sodium chlorides. Science 342, 1502–1505 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Lyakhov, A. O., Oganov, A. R. & Valle, M. in Modern Methods of Crystal Structure Prediction (ed. Oganov, A.R.) 147–180 (Wiley-VCH 2010).

  16. Oganov, A. R. & Glass, C. W. Crystal structure prediction using ab initio evolutionary techniques: principles and applications. J. Chem. Phys. 124, 244704 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Gerward, L. et al. X-ray diffraction investigations of CaF2 at high pressure. J. Appl. Crystallogr. 25, 578–581 (1992).

    Article  CAS  Google Scholar 

  18. Gregoryanz, E. et al. Structural diversity of sodium. Science 320, 1054–1057 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Hanfland, M., Loa, I. & Syassen, K. Sodium under pressure: bcc to fcc structural transition and pressure–volume relation to 100 GPa. Phys. Rev. B 65, 184109 (2002).

    Article  CAS  Google Scholar 

  20. Marqués, M. et al. Optical and electronic properties of dense sodium. Phys. Rev. B 83, 184106 (2011).

    Article  CAS  Google Scholar 

  21. Santamaría-Pérez, D., Mukherjee, G. D., Schwager, B. & Boehler, R. High-pressure melting curve of helium and neon: deviations from corresponding states theory. Phys. Rev. B 81, 214101 (2010).

    Article  CAS  Google Scholar 

  22. Gregoryanz, E., Degtyareva, O., Somayazulu, M., Hemley, R. J. & Mao, H.-k. Melting of dense sodium. Phys. Rev. Lett. 94, 185502 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Somayazulu, M. et al. Pressure-induced bonding and compound formation in xenon–hydrogen solids. Nat. Chem. 2, 50–53 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Miao, M.-S. & Hoffmann, R. High pressure electrides: a predictive chemical and physical theory. Acc. Chem. Res. 47, 1311–1317 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Miao, M.-S. & Hoffmann, R. High-pressure electrides: the chemical nature of interstitial quasiatoms. J. Am. Chem. Soc. 137, 3631–3637 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Dye, J. L. Electrons as anions. Science 301, 607–608 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Shannon, R. D. & Prewitt, C. T. Effective ionic radii in oxides and fluorides. Acta Crystallogr. B 25, 925–946 (1969).

    Article  CAS  Google Scholar 

  28. Rousseau, B. & Ashcroft, N. W. Interstitial electronic localization. Phys. Rev. Lett. 101, 046407 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Pauling, L. The principles determining the structure of complex ionic crystals. J. Am. Chem. Soc. 51, 1010–1026 (1929).

    Article  CAS  Google Scholar 

  30. Bader, R. F. W. Atoms in Molecules – A Quantum Theory (Univ. Oxford Press, 1990).

    Google Scholar 

  31. Henkelman, G., Arnaldsson, A. & Jónsson, H. A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 36, 354–360 (2006).

    Article  Google Scholar 

  32. Galeev, T. R., Dunnington, B. D., Schmidt, J. & Boldyrev, A. I. Solid state adaptive natural density partitioning: a tool for deciphering multi-center bonding in periodic systems. Phys. Chem. Chem. Phys. 15, 5022–5029 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Zubarev, D. Y. & Boldyrev, A. I. Developing paradigms of chemical bonding: adaptive natural density partitioning. Phys. Chem. Chem. Phys. 10, 5207–5217 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Dunnington, B. D. & Schmidt, J. R. Generalization of natural bond orbital analysis to periodic systems: applications to solids and surfaces via plane-wave density functional theory. J. Chem. Theory Comput. 8, 1902–1911 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Foster, J. P. & Weinhold, F. Natural hybrid orbitals. J. Am. Chem. Soc. 102, 7211–7218 (1980).

    Article  CAS  Google Scholar 

  36. Dronskowski, R. & Blöchl, P. E. Crystal orbital Hamilton populations (COHP): energy-resolved visualization of chemical bonding in solids based on density-functional calculations. J. Phys. Chem. 97, 8617–8624 (1993).

    Article  CAS  Google Scholar 

  37. Andersen, O. K. & Jepsen, O. Explicit, first-principles tight-binding theory. Phys. Rev. Lett. 53, 2571–2574 (1984).

    Article  CAS  Google Scholar 

  38. Winzenick, M., Vijayakumar, V. & Holzapfel, W. B. High-pressure X-ray diffraction on potassium and rubidium up to 50 GPa. Phys. Rev. B 50, 12381–12385 (1994).

    Article  CAS  Google Scholar 

  39. Dye, J. L. Electrides: early examples of quantum confinement. Acc. Chem. Res. 42, 1564–1572 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Vegas, Á. & Mattesini, M. Towards a generalized vision of oxides: disclosing the role of cations and anions in determining unit-cell dimensions. Acta Crystallogr. B 66, 338–344 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Oganov, A. R. et al. Ionic high-pressure form of elemental boron. Nature 457, 863–867 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  43. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  44. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  45. Dovesi, R. et al. CRYSTAL14 User's Manual (Univ. of Torino, 2014).

    Google Scholar 

  46. Gatti, C., Saunders, V. R. & Roetti, C. Crystal field effects on the topological properties of the electron density in molecular crystals: the case of urea. J. Chem. Phys. 101, 10686–10696 (1994).

    Article  CAS  Google Scholar 

  47. Krier, G., Jepsen, O., Burkhardt, A. & Andersen, O. K. The TB-LMTO-ASA Program (Max-Planck-Institute for Solid State Research, 1995).

  48. Togo, A., Oba, F. & Tanaka, I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Phys. Rev. B 78, 134106 (2008).

    Article  CAS  Google Scholar 

  49. Akahama, Y. & Kawamura, H. High-pressure Raman spectroscopy of diamond anvils to 250 GPa: method for pressure determination in the multimegabar pressure range. J. Appl. Phys. 96, 3748–3751 (2004).

    Article  CAS  Google Scholar 

  50. McMahon, J. M., Morales, M. A., Pierleoni, C. & Ceperley, D. M. The properties of hydrogen and helium under extreme conditions. Rev. Mod. Phys. 84, 1607–1653 (2012).

    Article  CAS  Google Scholar 

  51. Akahama, Y. & Kawamura, H. Pressure calibration of diamond anvil Raman gauge to 310 GPa. J. Appl. Phys. 100, 043516 (2006).

    Article  CAS  Google Scholar 

  52. Loubeyre, P. et al. Equation of state and phase diagram of solid 4He from single-crystal X-ray diffraction over a large PT domain. Phys. Rev. Lett. 71, 2272–2275 (1993).

    Article  CAS  PubMed  Google Scholar 

  53. Shishkin, M. & Kresse, G. Self-consistent GW calculations for semiconductors and insulators. Phys. Rev. B 75, 235102 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the China Scholarship Council (grant no. 201206200030), NSAF (grant no. U1530402), National Science Foundation (grant no. EAR-1114313), DARPA (grant no. W31P4Q1210008), Russian Science Foundation (grant no. 16-13-10459), National 973 Program of China (grant no. 2012CB921900) and Foreign Talents Introduction and Academic Exchange Program (grant no. B08040). X.F.Z. acknowledges funding from the National Science Foundation of China (grant no. 11674176). Calculations were performed at the Tianhe II supercomputer in Guangzhou and the supercomputer of the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the US Department of Energy, Office of Basic Energy Sciences, under contract no. DE-AC02-98CH10086. GeoSoilEnviroCARS is supported by the National Science Foundation – Earth Sciences (EAR-1128799) and Department of Energy – Geosciences (DE-FG02-94ER14466). Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no. DE-AC02-06CH11357. PETRA III at DESY is a member of the Helmholtz Association (HGF). The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007- 2013) under grant agreement no. 312284. The work of E.S. was performed under the auspices of the US Department of Energy by Lawrence Livermore National Security under contract no. DE-AC52-07NA27344. A.F.G. acknowledges support from the National Natural Science Foundation of China (grant no. 21473211), the Chinese Academy of Sciences (grant no. YZ201524) and the Chinese Academy of Sciences visiting professorship for senior international scientists (grant no. 2011T2J20) and Recruitment Program of Foreign Experts. S.L. was partly supported by state assignment project no. 0330-2016-0006. A.I.B. acknowledges the support of the National Science Foundation (CHE-1361413 to A.I.B.). I.A.P. acknowledges the support of the Ministry of Education and Science of the Russian Federation (agreement number 02.a03.21.0008).

Author information

Authors and Affiliations

Authors

Contributions

X.D. and A.R.O. designed the research. X.D., G.S. and I.A.P. performed and analysed the calculations. V.L.D. and R.D. carried out COHP analyses. A.G. designed experiments. S.L. and A.G. loaded the sample. A.F.G., E.S., S.L., V.B.P. and Z.K. performed the experiment. E.S. and A.F.G. analysed the experimental data. G.-R.Q., Q.Z., X.-F.Z. and A.I.B. assisted with calculations. All authors contributed to interpretation and discussion of the data. X.D., A.R.O., A.F.G., G.S., I.A.P., A.I.B. and H.-T.W. wrote the manuscript.

Corresponding authors

Correspondence to Artem R. Oganov, Xiang-Feng Zhou or Hui-Tian Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 790 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, X., Oganov, A., Goncharov, A. et al. A stable compound of helium and sodium at high pressure. Nature Chem 9, 440–445 (2017). https://doi.org/10.1038/nchem.2716

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2716

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing