Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Self-assembly of nanoparticles into biomimetic capsid-like nanoshells

Abstract

Nanoscale compartments are one of the foundational elements of living systems. Capsids, carboxysomes, exosomes, vacuoles and other nanoshells easily self-assemble from biomolecules such as lipids or proteins, but not from inorganic nanomaterials because of difficulties with the replication of spherical tiling. Here we show that stabilizer-free polydispersed inorganic nanoparticles (NPs) can spontaneously organize into porous nanoshells. The association of water-soluble CdS NPs into self-limited spherical capsules is the result of scale-modified electrostatic, dispersion and other colloidal forces. They cannot be accurately described by the Derjaguin–Landau–Vervey–Overbeek theory, whereas molecular-dynamics simulations with combined atomistic and coarse-grained description of NPs reveal the emergence of nanoshells and some of their stabilization mechanisms. Morphology of the simulated assemblies formed under different conditions matched nearly perfectly the transmission electron microscopy tomography data. This study bridges the gap between biological and inorganic self-assembling nanosystems and conceptualizes a new pathway to spontaneous compartmentalization for a wide range of inorganic NPs including those existing on prebiotic Earth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nanoshells spontaneously form from ‘naked’ polydispersed inorganic NPs.
Figure 2: 3D structure of nanoshells from CdS NPs obtained by TEM tomography.
Figure 3: Temporal progression and intermediate stages of nanoshell assembly that demonstrate the gradual transition from individual NPs to nanoshells.
Figure 4: Model 1 MD simulation of NP self-organization with high atomic precision but short effective assembly times.
Figure 5: Model 2 and Model 3 MD simulations of NP self-organization with progressive coarse graining and longer effective assembly times.

Similar content being viewed by others

References

  1. Lidmar, J., Mirny, L. & Nelson, D. R. Virus shapes and buckling transitions in spherical shells. Phys. Rev. E 68, 051910 (2003).

    Article  Google Scholar 

  2. Settembre, C., Fraldi, A., Medina, D. L. & Ballabio, A. Signals from the lysosome: a control centre for cellular clearance and energy metabolism. Nat. Rev. Mol. Cell Biol. 14, 283–296 (2013).

    Article  CAS  Google Scholar 

  3. Johnstone, R. M., Adam, M., Hammond, J. R., Orr, L. & Turbide, C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J. Biol. Chem. 262, 9412–9420 (1987).

    CAS  PubMed  Google Scholar 

  4. Tanaka, S. et al. Atomic-level models of the bacterial carboxysome shell. Science 319, 1083–1086 (2008).

    Article  CAS  Google Scholar 

  5. Bryant, D. A. & Frigaard, N.-U. Prokaryotic photosynthesis and phototrophy illuminated. Trends Microbiol. 14, 488–496 (2006).

    Article  CAS  Google Scholar 

  6. Hirsch, L. R. et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl Acad. Sci. USA 100, 13549–13554 (2003).

    Article  CAS  Google Scholar 

  7. Shan, Z. W. et al. Ultrahigh stress and strain in hierarchically structured hollow nanoparticles. Nat. Mater. 7, 947–952 (2008).

    Article  CAS  Google Scholar 

  8. Yu, J. & Yu, X. Hydrothermal synthesis and photocatalytic activity of zinc oxide hollow spheres. Environ. Sci. Technol. 42, 4902–4907 (2008).

    Article  CAS  Google Scholar 

  9. Caruso, F., Caruso, R. & Moehwald, H. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science 282, 1111–1114 (1998).

    Article  CAS  Google Scholar 

  10. Yin, Y. et al. Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science 304, 711–714 (2004).

    Article  CAS  Google Scholar 

  11. Sun, Y., Mayers, B. & Xia, Y. Metal nanostructures with hollow interiors. Adv. Mater. 15, 641–646 (2003).

    Article  CAS  Google Scholar 

  12. Chang, Y., Teo, J. J. & Zeng, H. C. Formation of colloidal CuO nanocrystallites and their spherical aggregation and reductive transformation to hollow Cu2O nanospheres. Langmuir 21, 1074–1079 (2005).

    Article  CAS  Google Scholar 

  13. Antonietti, M. & Förster, S. Vesicles and liposomes: a self-assembly principle beyond lipids. Adv. Mater. 15, 1323–1333 (2003).

    Article  CAS  Google Scholar 

  14. Hamm, C. E. et al. Architecture and material properties of diatom shells provide effective mechanical protection. Nature 421, 841–843 (2003).

    Article  CAS  Google Scholar 

  15. Xia, Y. et al. Self-assembly of self-limiting monodisperse supraparticles from polydisperse nanoparticles. Nat. Nanotech. 6, 580–587 (2011).

    Article  CAS  Google Scholar 

  16. Tang, Z., Kotov, N. A. & Giersig, M. Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. Science 297, 237–240 (2002).

    Article  CAS  Google Scholar 

  17. Tang, Z., Zhang, Z., Wang, Y., Glotzer, S. C. & Kotov, N. A. Self-assembly of CdTe nanocrystals into free-floating sheets. Science 314, 274–278 (2006).

    Article  CAS  Google Scholar 

  18. Kotov, N. A., Meldrum, F. C., Wu, C. & Fendler, J. H. Monoparticulate layer and Langmuir–Blodgett-type multiparticulate layers of size-quantized cadmium sulfide clusters: a colloid-chemical approach to superlattice construction. J. Phys. Chem. 98, 2735–2738 (1994).

    Article  CAS  Google Scholar 

  19. Shenton, W., Pum, D., Sleytr, U. B. & Mann, S. Synthesis of cadmium sulphide superlattices using self-assembled bacterial S-layers. Nature 389, 585–587 (1997).

    Article  CAS  Google Scholar 

  20. Banfield, J. F. Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science 289, 751–754 (2000).

    Article  CAS  Google Scholar 

  21. Cölfen, H. & Mann, S. Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures. Angew. Chem. Int. Ed. 42, 2350–2365 (2003).

    Article  Google Scholar 

  22. Querejeta-Fernández, A. et al. Unknown aspects of self-assembly of PbS microscale superstructures. ACS Nano 6, 3800–3812 (2012).

    Article  Google Scholar 

  23. Zhao, G. et al. Mature HIV-1 capsid structure by cryo-electron microscopy and all-atom molecular dynamics. Nature 497, 643–646 (2013).

    Article  CAS  Google Scholar 

  24. Srivastava, S. et al. Light-controlled self-assembly of semiconductor nanoparticles into twisted ribbons. Science 327, 1355–1359 (2010).

    Article  CAS  Google Scholar 

  25. Piccinini, E., Pallarola, D., Battaglini, F. & Azzaroni, O. Self-limited self-assembly of nanoparticles into supraparticles: towards supramolecular colloidal materials by design. Mol. Syst. Des. Eng. 1, 155–162 (2016).

    Article  CAS  Google Scholar 

  26. Sinyagin, A. Y., Belov, A., Tang, Z. & Kotov, N. A. Monte Carlo computer simulation of chain formation from nanoparticles. J. Phys. Chem. B 110, 7500–7507 (2006).

    Article  CAS  Google Scholar 

  27. Silvera Batista, C. A., Larson, R. G. & Kotov, N. A. Nonadditivity of nanoparticle interactions. Science 350, 1242477–1242477 (2015).

    Article  Google Scholar 

  28. Vossmeyer, T. et al. A ‘double-diamond superlattice’ built up of Cd17S4(SCH2CH2OH)26 clusters. Science 267, 1476–1479 (1995).

    Article  CAS  Google Scholar 

  29. Yaroslavov, A. A. et al. What is the effective charge of TGA-stabilized CdTe nanocolloids? J. Am. Chem. Soc. 127, 7322–7323 (2005).

    Article  CAS  Google Scholar 

  30. Kirnbauer, R., Booy, F., Cheng, N., Lowy, D. R. & Schiller, J. T. Papillomavirus L1 major capsid protein self-assembles into virus-like particles that are highly immunogenic. Proc. Natl Acad. Sci. USA 89, 12180–12184 (1992).

    Article  CAS  Google Scholar 

  31. Orgel, L. E. The origin of life—a review of facts and speculations. Trends Biochem. Sci. 23, 491–495 (1998).

    Article  CAS  Google Scholar 

  32. Rossbach, B. M., Leopold, K. & Weberskirch, R. Self-assembled nanoreactors as highly active catalysts in the hydrolytic kinetic resolution (HKR) of epoxides in water. Angew. Chem. Int. Ed. 45, 1309–1312 (2006).

    Article  CAS  Google Scholar 

  33. Peters, R. J. R. W. et al. Cascade reactions in multicompartmentalized polymersomes. Angew. Chem. 53, 146–150 (2014).

    Article  CAS  Google Scholar 

  34. Rösler, A., Vandermeulen, G. W. & Klok, H.-A. Advanced drug delivery devices via self-assembly of amphiphilic block copolymers. Adv. Drug Deliv. Rev. 53, 95–108 (2001).

    Article  Google Scholar 

  35. Nudelman, F., de With, G., Sommerdijk, N. A. J. M. Cryo-electron tomography: 3-dimensional imaging of soft matter. Soft Matter 7, 17–24 (2011).

    Article  CAS  Google Scholar 

  36. Agulleiro, J. I. & Fernandez, J. J. Fast tomographic reconstruction on multicore computers. Bioinformatics 27, 582–583 (2011).

    Article  CAS  Google Scholar 

  37. Kremer, J. R., Mastronarde, D. N. & McIntosh, J. R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116, 71–76 (1996).

    Article  CAS  Google Scholar 

  38. Frangakis, A. S. & Hegerl, R. Noise reduction in electron tomographic reconstructions using nonlinear anisotropic diffusion. J. Struct. Biol. 135, 239–250 (2001).

    Article  CAS  Google Scholar 

  39. Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

N.A.K. is thankful to National Science Foundation (NSF) for grants CBET 0932823, CBET 1036672, DMR 1120923, DMR1403777, DMR1411014, CBET 1538180 and CHE1566460. The work is also partially supported by the US Department of Defense under grant award no. MURI W911NF-12-1-0407. We thank the University of Michigan's Electron Microscopy and Analysis Laboratory for its assistance with electron microscopy. M.Y. thanks the financial support from the National Natural Science Foundation of China (grant no. 21303032 and 21571041). P.K.'s work was supported by the NSF Division of Materials Research (grant no. 1309765) and by the American Chemical Society Petroleum Research Fund (grant no. 53062-ND6). This research used resources of the National Energy Research Scientific Computing Center, supported by the Office of Science of the US Department of Energy under contract no. DE-AC02-05CH11231, and the Extreme Science and Engineering Discovery Environment, supported by NSF (grant no. OCI-1053575) and by the National Institutes of Health (grant no. GM085043).

Author information

Authors and Affiliations

Authors

Contributions

M.Y. performed the experiments, conceived the DLVO theory model and analysed the data. H.C. and P.K conceived the Gauss model and performed the MD simulations. G.Z. and P.Z. carried out and analysed the TEM tomography study. J.H.B. contributed the dynamic light-scattering experiments and calculations of the surface potential/charge of the NPs. N.A.K. conceived the project and designed the study. M.Y., H.C., P.K., G.Z., P.Z. and N.A.K. co-wrote the paper.

Corresponding authors

Correspondence to Peijun Zhang, Petr Král or Nicholas A. Kotov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 5124 kb)

Supplementary movie

Supplementary movie 1 (MP4 3749 kb)

Supplementary movie

Supplementary movie 2 (MP4 11032 kb)

Supplementary movie

Supplementary movie 3 (MP4 6628 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, M., Chan, H., Zhao, G. et al. Self-assembly of nanoparticles into biomimetic capsid-like nanoshells. Nature Chem 9, 287–294 (2017). https://doi.org/10.1038/nchem.2641

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2641

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing