Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Triamidoamine uranium(IV)–arsenic complexes containing one-, two- and threefold U–As bonding interactions

Abstract

To further our fundamental understanding of the nature and extent of covalency in uranium–ligand bonding, and the benefits that this may have for the design of new ligands for nuclear waste separation, there is burgeoning interest in the nature of uranium complexes with soft- and multiple-bond-donor ligands. Despite this, there have so far been no examples of structurally authenticated molecular uranium–arsenic bonds under ambient conditions. Here, we report molecular uranium(IV)–arsenic complexes featuring formal single, double and triple U–As bonding interactions. Compound formulations are supported by a range of characterization techniques, and theoretical calculations suggest the presence of polarized covalent one-, two- and threefold bonding interactions between uranium and arsenic in parent arsenide [U–AsH2], terminal arsinidene [U=AsH] and arsenido [U≡AsK2] complexes, respectively. These studies inform our understanding of the bonding of actinides with soft donor ligands and may be of use in future ligand design in this area.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synthesis of compounds 2c, 3c, 4, 5, 6 and 7 from precursor 1.
Figure 2: Molecular structures of 2c, 3c and 4.
Figure 3: Variable-temperature effective magnetic moment data for 2c, 3c and 4.
Figure 4: Selected NBOs that principally represent the U–As σ2 and σ2π2 interactions in 2c and 3c.
Figure 5: Selected NBOs that principally represent the four U–As σ2π4 interactions in the pruned model of 4′.

Similar content being viewed by others

References

  1. Dam, H. H., Reinhoudt, D. N. & Verboom, W. Multicoordinate ligands for actinide/lanthanide separations. Chem. Soc. Rev. 36, 367–377 (2007).

    CAS  PubMed  Google Scholar 

  2. Jones, M. B. & Gaunt, A. J. Recent developments in synthesis and structural chemistry of nonaqueous actinide complexes. Chem. Rev. 113, 1137–1198 (2013).

    CAS  PubMed  Google Scholar 

  3. Kozimor, S. A. et al. Trends in covalency for d- and f-element metallocene dichlorides identified using chlorine K-edge X-ray absorption spectroscopy and time-dependent density functional theory. J. Am. Chem. Soc. 131, 12125–12136 (2009).

    CAS  PubMed  Google Scholar 

  4. Seaman, L. A. et al. Probing the 5f orbital contribution to the bonding in a U(V) ketimide complex. J. Am. Chem. Soc. 134, 4931–4940 (2012).

    CAS  PubMed  Google Scholar 

  5. Minasian, S. G. et al. Determining relative f and d orbital contributions to M–Cl covalency in MCl62− (M = Ti, Zr, Hf, U) and UOCl5 using Cl K-edge X-ray absorption spectroscopy and time-dependent density functional theory. J. Am. Chem. Soc. 134, 5586–5597 (2012).

    CAS  PubMed  Google Scholar 

  6. Spencer, L. P. et al. Tetrahalide complexes of the [U(NR)2]2+ ion: synthesis, theory, and chlorine K-edge X-ray absorption spectroscopy. J. Am. Chem. Soc. 135, 2279–2290 (2013).

    CAS  PubMed  Google Scholar 

  7. Lukens, W. W. et al. Quantifying the σ and π interactions between U(V) f orbitals and halide, alkyl, alkoxide, amide, and ketimide ligands. J. Am. Chem. Soc. 135, 10742–10754 (2013).

    CAS  PubMed  Google Scholar 

  8. Jensen, M. P. & Bond, A. H. Comparison of covalency in the complexes of trivalent actinide and lanthanide cations. J. Am. Chem. Soc. 124, 9870–9877 (2002).

    CAS  PubMed  Google Scholar 

  9. Miguirditchian, M. et al. Thermodynamic study of the complexation of trivalent actinide and lanthanide cations by ADPTZ, a tridentate N-donor ligand. Inorg. Chem. 44, 1404–1412 (2005).

    CAS  PubMed  Google Scholar 

  10. Gaunt, A. J. et al. Experimental and theoretical comparison of actinide and lanthanide bonding in M[N(EPR2)2]3 complexes (M = U, Pu, La, Ce; E = S, Se, Te; R = Ph, iPr, H). Inorg. Chem. 47, 29–41 (2007).

    PubMed  Google Scholar 

  11. Ingram, K. I. M., Tassell, M. J., Gaunt, A. J. & Kaltsoyannis, N. Covalency in the f element–chalcogen bond. Computational studies of M[N(EPR2)2]3 (M = La, Ce, Pr, Pm, Eu, U, Np, Pu, Am, Cm; E = O, S, Se, Te; R = H, iPr, Ph). Inorg. Chem. 47, 7824–7833 (2008).

    CAS  PubMed  Google Scholar 

  12. Jones, M. B. et al. Uncovering f-element bonding differences and electronic structure in a series of 1:3 and 1:4 complexes with a diselenophosphinate ligand. Chem. Sci. 4, 1189–1203 (2013).

    CAS  Google Scholar 

  13. Ephritikhine, M. The vitality of uranium molecular chemistry at the dawn of the XXIst century. Dalton Trans. 2006, 2501–2516 (2006).

    Google Scholar 

  14. Hayton, T. W. Metal-ligand multiple bonding in uranium: structure and reactivity. Dalton Trans. 39, 1145–1158 (2010).

    CAS  PubMed  Google Scholar 

  15. Hayton, T. W. Recent developments in actinide-ligand multiple bonding. Chem. Commun. 49, 2956–2973 (2013).

    CAS  Google Scholar 

  16. Allen, F. H. The Cambridge Structural Database: a quarter of a million crystal structures and rising. Acta Cryst. Sect. B 58, 380 (2002).

    Google Scholar 

  17. Cantat, T. et al. The U=C double bond: synthesis and study of uranium nucleophilic carbene complexes. J. Am. Chem. Soc. 131, 963–972 (2009).

    CAS  PubMed  Google Scholar 

  18. Cooper, O. J. et al. Uranium–carbon multiple bonding: facile access to the pentavalent uranium carbene [U{C(PPh2NSiMe3)2}(Cl)2(I)] and comparison of UV=C and UIV=C double bonds. Angew. Chem. Int. Ed. 50, 2383–2386 (2011).

    CAS  Google Scholar 

  19. Tourneux, J-C. et al. Exploring the uranyl organometallic chemistry: from single to double uranium–carbon bonds. J. Am. Chem. Soc. 133, 6162–6165 (2011).

    CAS  PubMed  Google Scholar 

  20. Fortier, S., Walensky, J. R., Wu, G. & Hayton, T. W. Synthesis of a phosphorano-stabilized U(IV)-carbene via one-electron oxidation of a U(III)-ylide adduct. J. Am. Chem. Soc. 133, 6894–6897 (2011).

    CAS  PubMed  Google Scholar 

  21. Mills, D. P. et al. Synthesis of a uranium(VI)-carbene: reductive formation of uranyl(V)-methanides, oxidative preparation of a [R2C=U=O]2+ analogue of the [O=U=O]2+ uranyl ion (R = Ph2PNSiMe3), and comparison of the nature of UIV=C, UV=C and UVI=C double bonds. J. Am. Chem. Soc. 134, 10047–10054 (2012).

    CAS  PubMed  Google Scholar 

  22. Lu, E. et al. Synthesis, characterization, and reactivity of a uranium(VI) carbene imido oxo complex. Angew. Chem. Int. Ed. 53, 6696–6700 (2014).

    CAS  Google Scholar 

  23. Cramer, R. E., Panchanatheswaran, K. & Gilje, J. W. Uranium carbon multiple-bond chemistry. 3. Insertion of acetonitrile and the formation of a uranium nitrogen multiple bond. J. Am. Chem. Soc. 106, 1853–1854 (1984).

    CAS  Google Scholar 

  24. Brennan, J. G. & Andersen, R. A. Electron-transfer reactions of trivalent uranium. Preparation and structure of the uranium metallocene compounds (MeC5H4)3U=NPh and [(MeC5H4)3U]2[μ-η12-PhNCO]. J. Am. Chem. Soc. 107, 514–516 (1985).

    CAS  Google Scholar 

  25. Burns, C. J., Smith, W. H., Huffman, J. C. & Sattelberger, A. P. Uranium(VI) organoimido complexes. J. Am. Chem. Soc. 112, 3237–3239 (1990).

    CAS  Google Scholar 

  26. Arney, D. S. J., Burns, C. J. & Smith, D. C. Synthesis and structure of the first uranium(VI) organometallic complex. J. Am. Chem. Soc. 114, 10068–10069 (1992).

    CAS  Google Scholar 

  27. Arney, D. S. J. & Burns, C. J. Synthesis and properties of high-valent organouranium complexes containing terminal organoimido and oxo functional groups. A new class of organo-f-element complexes. J. Am. Chem. Soc. 117, 9448–9460 (1995).

    CAS  Google Scholar 

  28. Hayton, T. W. et al. Synthesis of imido analogs of the uranyl ion. Science 310, 1941 (2005).

    CAS  PubMed  Google Scholar 

  29. Castro-Rodríguez, I., Nakai, H. & Meyer, K. Multiple-bond metathesis mediated by sterically pressured uranium complexes. Angew. Chem. Int. Ed. 45, 2389–2392 (2006).

    Google Scholar 

  30. Graves, C. R. et al. Organometallic uranium(V)-imido halide complexes from synthesis to electronic structure and bonding. J. Am. Chem. Soc. 130, 5272–5285 (2008).

    CAS  PubMed  Google Scholar 

  31. Bart, S. C. et al. Carbon dioxide activation with sterically pressured mid- and high-valent uranium complexes. J. Am. Chem. Soc. 130, 12536–12546 (2008).

    CAS  PubMed  Google Scholar 

  32. Matson, E. M., Crestani, M. G., Fanwick, P. E. & Bart, S. C. Synthesis of U(IV) imidos from Tp*2U(CH2Ph) (Tp* = hydrotris(3,5-dimethylpyrazolyl)borate) by extrusion of bibenzyl. Dalton Trans. 41, 7952–7958 (2012).

    CAS  PubMed  Google Scholar 

  33. Jilek, R. E. et al. A direct route to bis(imido) uranium(V) halides via metathesis of uranium tetrachloride. J. Am. Chem. Soc. 134, 9876–9878 (2012).

    CAS  PubMed  Google Scholar 

  34. Camp, C., Pécaut, J. & Mazzanti, M. Tuning uranium–nitrogen multiple bond formation with ancillary siloxide ligands. J. Am. Chem. Soc. 135, 12101–12111 (2013).

    CAS  PubMed  Google Scholar 

  35. Lam, O. P. et al. Observation of the inverse trans influence (ITI) in a uranium(V) imide coordination complex: an experimental study and theoretical evaluation. Inorg. Chem. 51, 6190–6199 (2012).

    CAS  PubMed  Google Scholar 

  36. Anderson, N. H. et al. Harnessing redox activity for the formation of uranium tris(imido) compounds. Nature Chem. 6, 919–926 (2014).

    CAS  Google Scholar 

  37. King, D. M. et al. Synthesis and characterization of an f-block terminal parent imido [U=NH] complex a masked uranium(IV) nitride. J. Am. Chem. Soc. 136, 5619–5622 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. King, D. M. et al. Synthesis and structure of a terminal uranium nitride complex. Science 337, 717–720 (2012).

    CAS  PubMed  Google Scholar 

  39. King, D. M. et al. Isolation and characterization of a uranium(VI)-nitride triple bond. Nature Chem. 5, 482–488 (2013).

    CAS  Google Scholar 

  40. Cleaves, P. A. et al. Two-electron reductive carbonylation of terminal uranium(V) and uranium(VI) nitrides to cyanate by carbon monoxide. Angew. Chem. Int. Ed. 53, 10412–10415 (2014).

    CAS  Google Scholar 

  41. Duttera, M. R., Day, V. W. & Marks, T. J. Organoactinide phosphine/phosphite coordination chemistry. Facile hydride-induced dealkoxylation and the formation of actinide phosphinidene complexes. J. Am. Chem. Soc. 106, 2907–2912 (1984).

    CAS  Google Scholar 

  42. Arney, D. S. J., Schnabel, R. C., Scott, B. C. & Burns, C. J. Preparation of actinide phosphinidene complexes: steric control of reactivity. J. Am. Chem. Soc. 118, 6780–6781 (1996).

    CAS  Google Scholar 

  43. Gardner, B. M. et al. Triamidoamine-uranium(IV)-stabilized terminal parent phosphide and phosphinidene complexes. Angew. Chem. Int. Ed. 53, 4484–4488 (2014).

    CAS  Google Scholar 

  44. Brown, J. L., Fortier, S., Lewis, R. A., Wu, G. & Hayton, T. W. A complete family of terminal uranium chalcogenides, [U(E)(N{SiMe3}2)3] (E = O, S, Se, Te). J. Am. Chem. Soc. 134, 15468–15475 (2012).

    CAS  PubMed  Google Scholar 

  45. Brown, J. L., Fortier, S., Wu, G., Kaltsoyannis, N. & Hayton, T. W. Synthesis and spectroscopic and computational characterization of the chalcogenido-substituted analogues of the uranyl ion, [OUE]2+ (E = S, Se). J. Am. Chem. Soc. 135, 5352–5355 (2013).

    CAS  PubMed  Google Scholar 

  46. Scherer, O. J., Werner, B., Heckmann, G. & Wolmershäuser, G. Bicyclic P6 as complex ligand. Angew. Chem. Int. Ed. 30, 553–555 (1991).

    Google Scholar 

  47. Stephens, F. H. Activation of White Phosphorus by Molybdenum- and Uranium Tris-Amides PhD thesis, Massachusetts Institute of Technology (2004).

  48. Frey, A. S. P., Cloke, F. G. N., Hitchcock, P. B. & Green, J. C. Activation of P4 by U(η5-C5Me5)(η8-C8H6(SiiPr3)2-1,4)(THF); the X-ray structure of [U(η5-C5Me5)(η8-C8H6(SiiPr3)2-1,4)]2(μ-η22-P4). New. J. Chem. 35, 2022–2026 (2011).

    CAS  Google Scholar 

  49. Patel, D. et al. An actinide-zintl cluster: a tris(triamidouranium)μ3-η222-heptaphosphanortricyclane and its diverse synthetic utility. Angew. Chem. Int. Ed. 52, 13334–13337 (2013).

    CAS  Google Scholar 

  50. Selbin, J., Ahmad, N. & Pribble, M. J. Novel complexes of uranium(V). J. Chem. Soc. Chem. Commun. 759–760 (1969).

  51. Deutscher, R. L. & Kepert, D. L. Eight-coordinate complexes of niobium, tantalum, and uranium tetrahalides. Inorg. Chem. 9, 2305–2310 (1970).

    CAS  Google Scholar 

  52. Scherer, O. J., Schulze, J. & Wolmershäuser, G. Bicyclisches As6 als komplexligand. J. Organomet. Chem. 484, C5–C7 (1994).

    CAS  Google Scholar 

  53. Wu, Q-Y. et al. Terminal U≡E (E = N, P, As, Sb, and Bi) bonds in uranium complexes: a theoretical perspective. J. Phys. Chem. A 119, 922–930 (2015).

    CAS  PubMed  Google Scholar 

  54. Andrews, L., Wang, X., Lindh, R., Roos, B. O. & Marsden, C. J. Simple N≡UF3 and P≡UF3 molecules with triple bonds to uranium. Angew. Chem. Int. Ed. 47, 5366–5370 (2008).

    CAS  Google Scholar 

  55. Andrews, L., Wang, X. & Roos, B. O. As≡UF3 molecule with a weak triple bond to uranium. Inorg. Chem. 48, 6594–6598 (2009).

    CAS  PubMed  Google Scholar 

  56. Ebsworth, E. A. V., Gould, R. O., Mayo, R. A. & Walkinshaw, M. Reactions of phosphine, arsine, and stibene with carbonylbis(triethylphosphine)iridium(I) halides. Part 1. Reactions in toluene; X-ray crystal; structures of [Ir(CO)ClH(PEt3)2(AsH2)] and [Ir(CO)XH(PEt3)2(μ-ZH2)RuCl2(η6-MeC6H4CHMe2-p)] (X = Br, Z = P; X = Cl, Z = As). J. Chem. Soc. Dalton Trans. 1987, 2831–2838 (1987).

    Google Scholar 

  57. Becker, G. et al. Metal derivatives of molecular compounds. IX Bis(1,2-dimethoxyethane-O,O′)lithium phosphanide, arsanide, and chloride—three new representations of the bis(1,2-dimethoxyethane-O,O')lithium bromide type. Z. Anorg. Allg. Chem. 624, 469–482 (1998).

    CAS  Google Scholar 

  58. Dixon, R. N., Duxbury, G. & Lamberton, H. M. Arsenic hydride radicals. Chem. Commun. 460–461 (1966).

  59. Herrmann, W. A., Koumbouris, B., Zahn, T. & Ziegler, M. L. Arsanediyl (arsinidene) and diarsene complexes by metal-induced degradation of monoarsane. Angew. Chem. Int. Ed. Engl. 23, 812–814 (1984).

    Google Scholar 

  60. Bachman, R. E., Miller, S. K. & Whitmire, K. H. Synthesis and structure of an anionic arsenic hydride complex: [PPN]2[HAs{Fe(CO)4}3]•0.5THF. Inorg. Chem. 33, 2075–2076 (1994).

    CAS  Google Scholar 

  61. Präsang, C., Stoelzel, M., Inoue, S., Meltzer, A. & Driess, M. Metal-free activation of EH3 (E = P, As) by an ylide-like silylene and formation of a donor-stabilized arsasilene with a HSi=AsH subunit. Angew. Chem. Int. Ed. 49, 10002–10005 (2010).

    Google Scholar 

  62. Johnson, B. P., Balázs, G. & Scheer, M. Low-coordinate E1 ligand complexes of group 15 elements—a developing area. Coord. Chem. Rev. 250, 1178–1195 (2006).

    CAS  Google Scholar 

  63. Spinney, H. A., Piro, N. A. & Cummins, C. C. Triple-bond reactivity of an AsP complex intermediate: synthesis stemming from molecular arsenic, As4 . J. Am. Chem. Soc. 131, 16233–16243 (2009).

    CAS  PubMed  Google Scholar 

  64. Curley, J. J., Piro, N. A. & Cummins, C. C. A terminal molybdenum arsenide complex synthesized from yellow arsenic. Inorg. Chem. 48, 9599–9601 (2009).

    CAS  PubMed  Google Scholar 

  65. Johnson, W. C. & Pechukas, A. Hydrogen compounds of arsenic. II. Sodium and potassium dihydrogen arsenides. J. Am. Chem. Soc. 59, 2068–2071 (1937).

    CAS  Google Scholar 

  66. Peters, J. C., Odom, A. L. & Cummins, C. C. A terminal molybdenum carbide prepared by methylidyne deprotonation. Chem. Commun. 1995–1996 (1997).

  67. Gardner, B. M. et al. The role of 5f-orbital participation in unexpected inversion of the σ-bond metathesis reactivity trend of triamidoamine thorium(IV) and uranium(IV) alkyls. Chem. Sci. 5, 2489–2497 (2014).

    CAS  Google Scholar 

  68. Pyykkö, P. & Atsumi, M. Molecular single-bond covalent radii for elements 1–118. Chem. Eur. J. 15, 186–197 (2009).

    PubMed  Google Scholar 

  69. Pyykkö, P. & Atsumi, M. Molecular double-bond covalent radii for elements Li–E112. Chem. Eur. J. 15, 12770–12779 (2009).

    PubMed  Google Scholar 

  70. Pyykkö, P., Riedel, S. & Patzschke, M. Triple-bond covalent radii. Chem. Eur. J. 11, 3511–3520 (2005).

    PubMed  Google Scholar 

  71. Kindra, D. R. & Evans, W. J. Magnetic susceptibility of uranium complexes. Chem. Rev. 114, 8865–8882 (2014).

    CAS  PubMed  Google Scholar 

  72. Bader, R. F. W., Slee, T. S., Cremer, D. & Kraka, E. Descriptions of conjugation and hyperconjugation in terms of electron distributions. J. Am. Chem. Soc. 105, 5061–5068 (1983).

    CAS  Google Scholar 

  73. Halter, D. P., La Pierre, H. S., Heinemann, F. W. & Meyer, K. Uranium(IV) halide (F, Cl, Br, and I) monoarene complexes. Inorg. Chem. 53, 8418–8424 (2014).

    CAS  PubMed  Google Scholar 

  74. Patel, D., McMaster, J., Lewis, W., Blake, A. J. & Liddle, S. T. Reductive assembly of cyclobutadienyl and diphosphacyclobutadienyl rings at uranium. Nature Commun. 4, 2323 (2013).

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Royal Society, the European Research Council, the Engineering and Physical Sciences Research Council, the Universities of Nottingham, Manchester and Regensburg, the Deutsche Forschungsgemeinschaft, the UK National Nuclear Laboratory, COST Action CM1006 and the EPSRC UK National EPR Facility for supporting this work.

Author information

Authors and Affiliations

Authors

Contributions

B.M.G. synthesized and characterized the compounds. G.B. prepared the parent potassium arsenide complex. F.T. and E.J.L.M. recorded and interpreted the magnetic data. J.M. and S.T.L. conducted and analysed the theoretical calculations. W.L. and A.J.B. carried out the X-ray single-crystal diffraction work. S.T.L. and M.S. originated the central idea, supervised the work, analysed the data and wrote the manuscript with contributions from all co-authors.

Corresponding authors

Correspondence to Manfred Scheer or Stephen T. Liddle.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 5407 kb)

Supplementary information

First set of crystallographic data for compound 2c (CIF 29 kb)

Supplementary information

Second set of crystallographic data for compound 2c (CIF 55 kb)

Supplementary information

Crystallographic data for compound 3c (CIF 84 kb)

Supplementary information

Crystallographic data for compound 4 (CIF 116 kb)

Supplementary information

Crystallographic data for compound 5 (CIF 112 kb)

Supplementary information

Crystallographic data for compound 7 (CIF 81 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gardner, B., Balázs, G., Scheer, M. et al. Triamidoamine uranium(IV)–arsenic complexes containing one-, two- and threefold U–As bonding interactions. Nature Chem 7, 582–590 (2015). https://doi.org/10.1038/nchem.2279

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2279

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing