Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A molecular shuttle that operates inside a metal–organic framework

Abstract

A ‘molecular shuttle’ is an interlocked molecular assembly in which a macrocyclic ring is able to move back and forth between two recognition sites. This large-amplitude translational motion was first characterized in solution in 1991. Since that report, many mechanically interlocked molecules (MIMs) have been designed, synthesized and shown to mimic the complex functions of macroscopic switches and machines. Here, we show that this fundamental concept—the translational motion of a molecular shuttle—can be organized, initiated and made to operate inside a crystalline, solid-state material. A metal–organic framework (MOF) designated UWDM-4 was prepared that contains a rigid linker that is a molecular shuttle. It was demonstrated by variable-temperature 1H-13C cross-polarization/magic-angle spinning (CP/MAS) and 13C 2D exchange correlation spectroscopy (EXSY) solid-state NMR at 21.1 T on a 13C-enriched sample that the macrocyclic ring undergoes rapid shuttling along the rigid axle built between struts of the framework.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stoddart's original molecular shuttle operating in acetone solution.
Figure 2: MOF materials are commonly constructed from a combination of rigid linking struts (green) and metal nodes (brown).
Figure 3: Synthesis and X-ray structural characterization of a molecular shuttle linker.
Figure 4: Structure of UWDM-4·HBF4 determined by single-crystal X-ray diffraction.
Figure 5: UWDM-4·HBF4 can be efficiently converted to UWDM-4 without loss of crystallinity.
Figure 6: 13C SSNMR studies verify that the designed molecular shuttle can undergo translational motion (molecular shuttling) inside the lattice of the MOF.

Similar content being viewed by others

References

  1. Anelli, P. L., Spencer, N. & Stoddart, J. F. A molecular shuttle. J. Am. Chem. Soc. 113, 5131–5133 (1991).

    Article  CAS  Google Scholar 

  2. Sauvage, J-P. & Dietrich-Buchecker, C. (eds) Molecular Catenanes, Rotaxanes and Knots: A Journey Through the World of Molecular Topology (Wiley-VCH, 1999).

    Book  Google Scholar 

  3. Thordarson, P., Bijsterveld, E. J. A., Rowan, A. E. & Nolte, R. J. M. Epoxidation of polybutadiene by a topologically linked catalyst. Nature 424, 915–918 (2003).

    Article  CAS  Google Scholar 

  4. Kay, E. K., Leigh, D. A. & Zerbetto, F. Synthetic molecular motors and mechanical machines. Angew. Chem. Int. Ed. 46, 72–191 (2007).

    Article  CAS  Google Scholar 

  5. Gong, H-Y., Rambo, B. M., Karnas, E., Lynch, V. M. & Sessler, J. L. A ‘Texas-sized’ molecular box that forms an anion-induced supramolecular necklace. Nature Chem. 2, 406–409 (2010).

    Article  CAS  Google Scholar 

  6. Lee, S., Chen, C-H. & Flood, A. H. A pentagonal cyanostar macrocycle with cyanostilbene CH donors binds anions and forms dialkylphosphate [3]rotaxanes. Nature Chem. 5, 704–710 (2013).

    Article  CAS  Google Scholar 

  7. Langton, M. J. & Beer, P. D. Rotaxane and catenane host structures for sensing charged guest species. Acc. Chem. Res. 47, 1935–1949 (2014).

    Article  CAS  Google Scholar 

  8. Stoddart, J. F. Putting mechanically interlocked molecules (MIMs) to work in tomorrow's world. Angew. Chem. Int. Ed. 53, 11102–11104 (2014).

    Article  CAS  Google Scholar 

  9. Bissell, R. A., Córdova, E., Kaifer, A. E. & Stoddart, J. F. A chemically and electrochemically switchable molecular shuttle. Nature 369, 133–137 (1994).

    Article  CAS  Google Scholar 

  10. Marlin, D. S., Cabrera, D. G., Leigh, D. A. & Slawin, A. M. Z. An allosterically regulated molecular shuttle. Angew. Chem. Int. Ed. 45, 1385–1390 (2006).

    Article  CAS  Google Scholar 

  11. Bottari, G., Leigh, D. A. & Pérez, E. M. Chiroptical switching in a bistable molecular shuttle. J. Am. Chem. Soc. 125, 13360–13361 (2003).

    Article  CAS  Google Scholar 

  12. Vella, S. J., Tiburcio, J. & Loeb, S. J. Optically sensed molecular shuttles driven by acid–base chemistry. Chem. Commun. 4752–4754 (2007).

  13. Berná, J. et al. Macroscopic transport by synthetic molecular machines. Nature Mater. 4, 704–710 (2005).

    Article  Google Scholar 

  14. Feringa, B. L. & Browne, W. R. (eds) Molecular Switches 2nd edn (Wiley-VCH, 2011).

    Book  Google Scholar 

  15. Collier, C. P. et al. A [2]catenane-based solid-state electronically reconfigurable switch. Science 289, 1172–1175 (2000).

    Article  CAS  Google Scholar 

  16. Fahrenbach, A. C. et al. Organic switches for surfaces and devices. Adv. Mater. 25, 331–348 (2013).

    Article  CAS  Google Scholar 

  17. Lewandowski, B. et al. Sequence-specific peptide synthesis by an artificial small-molecule machine. Science 339, 189–193 (2013).

    Article  CAS  Google Scholar 

  18. Li, H. et al. Relative unidirectional translation in an artificial molecular assembly fueled by light. J. Am. Chem. Soc. 135, 18609–18620 (2013).

    Article  CAS  Google Scholar 

  19. Ragazzon, G., Baroncini, M., Silvi, S., Venturi, M. & Credi, A. Light-powered autonomous and directional molecular motion of a dissipative self-assembling system. Nature Nanotech. 10, 70–75 (2015).

    Article  CAS  Google Scholar 

  20. Coskun, A., Banaszak, M., Astumian, R. D., Stoddart, J. F. & Grzybowski, B. A. Great expectations: can artificial molecular machines deliver on their promises? Chem. Soc. Rev. 41, 19–31 (2012).

    Article  CAS  Google Scholar 

  21. Balzani, V., Credi, A. & Venturi, M. Molecular Devices and Machines: Concepts and Perspectives for the Nanoworld (Wiley InterScience, 2008).

    Book  Google Scholar 

  22. Balzani, V. Nanoscience and nanotechnology: the bottom-up construction of molecular devices and machines. Pure Appl. Chem. 80, 1631–1650 (2008).

    Article  CAS  Google Scholar 

  23. Deng, H. X., Olson, M. A., Stoddart, J. F. & Yaghi, O. M. Robust dynamics. Nature Chem. 2, 439–443 (2010).

    Article  CAS  Google Scholar 

  24. Zhou, H-C., Long, J. R. & Yaghi, O. M. Introduction to metal–organic frameworks. Chem. Rev. 112, 673–674 (2012).

    Article  CAS  Google Scholar 

  25. Li, H., Eddaoudi, M., O'Keeffe, M. & Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metal–organic framework. Nature 402, 276–279 (1999).

    Article  CAS  Google Scholar 

  26. Furukawa, H., Cordova, K. E., O'Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal–organic frameworks. Science 341, 1230444 (2013).

    Article  Google Scholar 

  27. Lu, W. et al. Tuning the structure and function of metal–organic frameworks via linker design. Chem. Soc. Rev. 43, 5561–5593 (2014).

    Article  CAS  Google Scholar 

  28. Li, Q. et al. Docking in metal–organic frameworks. Science 325, 855–859 (2009).

    Article  CAS  Google Scholar 

  29. Li, Q. et al. A catenated strut in a catenated metal–organic framework. Angew. Chem. Int. Ed. 49, 6751–6755 (2010).

    Article  CAS  Google Scholar 

  30. Li, Q. et al. A metal–organic framework replete with ordered donor–acceptor catenanes. Chem. Commun. 380–382 (2010).

    Article  Google Scholar 

  31. Coskun, A. et al. Metal–organic frameworks incorporating copper–complexed rotaxanes. Angew. Chem. Int. Ed. 51, 2160–2163 (2012).

    Article  CAS  Google Scholar 

  32. Cao, D. et al. Three-dimensional architectures incorporating stereoregular donor–acceptor stacks. Chem. Eur. J. 19, 8457–8465 (2013).

    Article  CAS  Google Scholar 

  33. Strutt, N. L. et al. Incorporation of an A1/A2-difunctionalized pillar[5]arene into a metal–organic framework. J. Am. Chem. Soc. 134, 17436–17439 (2012).

    Article  CAS  Google Scholar 

  34. Vukotic, V. N. & Loeb, S. J. Coordination polymers containing rotaxanes as linkers. Chem. Soc. Rev. 41, 5896–5906 (2012).

    Article  CAS  Google Scholar 

  35. Loeb, S. J. Rotaxanes as ligands: from molecules to materials. Chem. Soc. Rev. 36, 226–235 (2007).

    Article  CAS  Google Scholar 

  36. Vukotic, V. N., Harris, K. J., Zhu, K., Schurko, R. W. & Loeb, S. J. Metal–organic frameworks with dynamic interlocked components. Nature Chem. 4, 456–460 (2012).

    Article  CAS  Google Scholar 

  37. Zhu, K., Vukotic, V. N., O'Keefe, C. A., Schurko, R. W. & Loeb, S. J. Metal–organic frameworks with mechanically interlocked pillars: controlling ring dynamics in the solid-state via a reversible phase change. J. Am. Chem. Soc. 136, 7403–7409 (2014).

    Article  CAS  Google Scholar 

  38. Eddaoudi, M. et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295, 469–472 (2002).

    Article  CAS  Google Scholar 

  39. Oisaki, K., Li, Q., Furukawa, H., Czaja, A. U. & Yaghi, O. M. A metal–organic framework with covalently bound organometallic complexes. J. Am. Chem. Soc. 132, 9262–9264 (2010).

    Article  CAS  Google Scholar 

  40. Zhu, K., Vukotic, V. N. & Loeb, S. J. Molecular shuttling of a compact and rigid, H-shaped [2]rotaxane. Angew. Chem Int. Ed. 51, 2168–2172 (2012).

    Article  CAS  Google Scholar 

  41. Zhu, K., Vukotic, V. N., Noujeim, N. & Loeb, S. J. Bis(benzimidazolium) axles and crown ether wheels: a versatile templating pair for the formation of [2]rotaxane molecular shuttles. Chem. Sci. 3, 3265–3271 (2012).

    Article  CAS  Google Scholar 

  42. Vandersluis, P. & Spek, A. L. Bypass—an effective method for the refinement of crystal-structures containing disordered solvent regions. Acta Crystallogr. A46, 194–201 (1990).

    Article  Google Scholar 

  43. Noujeim, N., Zhu, K., Vukotic, V. N. & Loeb, S. J. [2]Pseudorotaxanes from T-shaped benzimidazolium axles and [24]crown-8 wheels. Org. Lett. 14, 2484–2487 (2012).

    Article  CAS  Google Scholar 

  44. Bain, A. D. Chemical exchange in NMR. Prog. Nucl. Magn. Reson. Spectrosc. 43, 63–103 (2003).

    Article  CAS  Google Scholar 

  45. Karlen, S. D. et al. Symmetry and dynamics of molecular rotors in amphidynamic molecular crystals. Proc. Natl Acad. Sci. USA 107, 14973–14977 (2010).

    Article  CAS  Google Scholar 

  46. Jeener, J., Meier, B. H., Bachmann, P. & Ernst, R. R. Investigation of exchange processes by two-dimensional NMR spectroscopy. J. Chem. Phys. 71, 4546–4553 (1979).

    Article  CAS  Google Scholar 

  47. Perrin, C. L. & Dwyer, T. J. Application of two-dimensional NMR to kinetics of chemical exchange. Chem. Rev. 90, 935–967 (1990).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada through Discovery Grants and Accelerator Supplements to S.J.L. and R.W.S. and a Canada Research Chair award to S.J.L. R.W.S. and S.J.L. acknowledge support from NSERC, the Canadian Foundation for Innovation, the Ontario Innovation Trust and the University of Windsor, for the development and maintenance of the SSNMR and X-ray diffraction centres. V.N.V. acknowledges financial support provided by NSERC through an Alexander Graham Bell Canada Graduate Doctoral Scholarship and by the International Center for Diffraction Data for a Ludo Frevel Crystallography Scholarship. The authors thank M. Revington for technical assistance with solution NMR spectroscopy experiments, V. Terskikh for collecting the 21.1 T SSNMR data and J. Auld for recording electrospray mass spectrometry data. Access to the 900 MHz NMR spectrometer was provided by the National Ultrahigh-Field NMR Facility for Solids (Ottawa, Canada; http://www.uwindsor.ca).

Author information

Authors and Affiliations

Authors

Contributions

S.J.L. supervised the project. K.Z. designed the experiments with help from V.N.V. and C.O. K.Z. performed all the synthetic experiments. K.Z. and V.N.V. collected and analysed the PXRD, TGA and SCXRD data with assistance from S.J.L. C.O. collected and analysed the SSNMR data. R.W.S supervised all SSNMR data collection, analysis and interpretation. S.J.L. and K.Z. wrote the manuscript with input from V.N.V., C.O. and R.W.S.

Corresponding authors

Correspondence to Robert W. Schurko or Stephen J. Loeb.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 4408 kb)

Supplementary information

Crystallographic data for compound 2. (CIF 1490 kb)

Supplementary information

Crystallographic data for compound UWDM-4•HBF4. (CIF 4846 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, K., O'Keefe, C., Vukotic, V. et al. A molecular shuttle that operates inside a metal–organic framework. Nature Chem 7, 514–519 (2015). https://doi.org/10.1038/nchem.2258

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2258

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing