Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Resource
  • Published:

A proteomic atlas of the legume Medicago truncatula and its nitrogen-fixing endosymbiont Sinorhizobium meliloti

This article has been updated

Abstract

Legumes are essential components of agricultural systems because they enrich the soil in nitrogen and require little environmentally deleterious fertilizers. A complex symbiotic association between legumes and nitrogen-fixing soil bacteria called rhizobia culminates in the development of root nodules, where rhizobia fix atmospheric nitrogen and transfer it to their plant host. Here we describe a quantitative proteomic atlas of the model legume Medicago truncatula and its rhizobial symbiont Sinorhizobium meliloti, which includes more than 23,000 proteins, 20,000 phosphorylation sites, and 700 lysine acetylation sites. Our analysis provides insight into mechanisms regulating symbiosis. We identify a calmodulin-binding protein as a key regulator in the host and assign putative roles and targets to host factors (bioactive peptides) that control gene expression in the symbiont. Further mining of this proteomic resource may enable engineering of crops and their microbial partners to increase agricultural productivity and sustainability.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: In-depth proteome sequencing reveals organ-specific proteins and post-translational modifications.
Figure 2: Functional characterization of proteins and post-translational modifications in M. truncatula.
Figure 3: Nodule-specific proteins and post-translational modifications provide evidence for key regulators in symbiosis.
Figure 4: Temporal stages of host-factor expression in M. truncatula and putative targets in S. meliloti.

Similar content being viewed by others

Change history

  • 20 October 2016

    In the version of this article initially published, Alireza F. Siahpirani's name was misspelled as Sihapirani. The error has been corrected for the print, PDF and HTML versions of this article.

References

  1. Timmers, A.C., Auriac, M.C. & Truchet, G. Refined analysis of early symbiotic steps of the Rhizobium-Medicago interaction in relationship with microtubular cytoskeleton rearrangements. Development 126, 3617–3628 (1999).

    CAS  PubMed  Google Scholar 

  2. Xiao, T.T. et al. Fate map of Medicago truncatula root nodules. Development 141, 3517–3528 (2014).

    Article  CAS  Google Scholar 

  3. Gibson, K.E., Kobayashi, H. & Walker, G.C. Molecular determinants of a symbiotic chronic infection. Annu. Rev. Genet. 42, 413–441 (2008).

    Article  CAS  Google Scholar 

  4. Mergaert, P. et al. A novel family in Medicago truncatula consisting of more than 300 nodule-specific genes coding for small, secreted polypeptides with conserved cysteine motifs. Plant Physiol. 132, 161–173 (2003).

    Article  CAS  Google Scholar 

  5. Vasse, J., de Billy, F., Camut, S. & Truchet, G. Correlation between ultrastructural differentiation of bacteroids and nitrogen fixation in alfalfa nodules. J. Bacteriol. 172, 4295–4306 (1990).

    Article  CAS  Google Scholar 

  6. Lauressergues, D. et al. Primary transcripts of microRNAs encode regulatory peptides. Nature 520, 90–93 (2015).

    Article  CAS  Google Scholar 

  7. Oldroyd, G.E.D., Murray, J.D., Poole, P.S. & Downie, J.A. The rules of engagement in the legume-rhizobial symbiosis. Annu. Rev. Genet. 45, 119–144 (2011).

    Article  CAS  Google Scholar 

  8. Van de Velde, W. et al. Aging in legume symbiosis. A molecular view on nodule senescence in Medicago truncatula. Plant Physiol. 141, 711–720 (2006).

    Article  CAS  Google Scholar 

  9. Limpens, E. et al. cell- and tissue-specific transcriptome analyses of Medicago truncatula root nodules. PLoS One 8, e64377 (2013).

    Article  CAS  Google Scholar 

  10. Maunoury, N. et al. Differentiation of symbiotic cells and endosymbionts in Medicago truncatula nodulation are coupled to two transcriptome-switches. PLoS One 5, e9519 (2010).

    Article  Google Scholar 

  11. Lohar, D.P. et al. Transcript analysis of early nodulation events in Medicago truncatula. Plant Physiol. 140, 221–234 (2006).

    Article  CAS  Google Scholar 

  12. El Yahyaoui, F. et al. Expression profiling in Medicago truncatula identifies more than 750 genes differentially expressed during nodulation, including many potential regulators of the symbiotic program. Plant Physiol. 136, 3159–3176 (2004).

    Article  CAS  Google Scholar 

  13. Grimsrud, P.A. et al. Large-scale phosphoprotein analysis in Medicago truncatula roots provides insight into in vivo kinase activity in legumes. Plant Physiol. 152, 19–28 (2010).

    Article  CAS  Google Scholar 

  14. Rose, C.M. et al. Medicago PhosphoProtein Database: a repository for Medicago truncatula phosphoprotein data. Front. Plant Sci. 3, 122 (2012).

    PubMed  PubMed Central  Google Scholar 

  15. Rose, C.M. et al. Rapid phosphoproteomic and transcriptomic changes in the rhizobia-legume symbiosis. Mol. Cell. Proteomics 11, 724–744 (2012).

    Article  CAS  Google Scholar 

  16. Volkening, J.D. et al. A proteogenomic survey of the Medicago truncatula genome. Mol. Cell. Proteomics 11, 933–944 (2012).

    Article  CAS  Google Scholar 

  17. Clarke, V.C. et al. Proteomic analysis of the soybean symbiosome identifies new symbiotic proteins. Mol. Cell. Proteomics 14, 1301–1322 (2015).

    Article  CAS  Google Scholar 

  18. Durgo, H. et al. Identification of nodule-specific cysteine-rich plant peptides in endosymbiotic bacteria. Proteomics 15, 2291–2295 (2015).

    Article  CAS  Google Scholar 

  19. Benedito, V.A. et al. A gene expression atlas of the model legume Medicago truncatula. Plant J. 55, 504–513 (2008).

    Article  CAS  Google Scholar 

  20. Young, N.D. et al. The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 480, 520–524 (2011).

    Article  CAS  Google Scholar 

  21. Senko, M.W. et al. Novel parallelized quadrupole/linear ion trap/Orbitrap tribrid mass spectrometer improving proteome coverage and peptide identification rates. Anal. Chem. 85, 11710–11714 (2013).

    Article  CAS  Google Scholar 

  22. Hebert, A.S. et al. The one hour yeast proteome. Mol. Cell. Proteomics 13, 339–347 (2014).

    Article  CAS  Google Scholar 

  23. Huttlin, E.L. et al. A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 143, 1174–1189 (2010).

    Article  CAS  Google Scholar 

  24. Sharma, K. et al. Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep. 8, 1583–1594 (2014).

    Article  CAS  Google Scholar 

  25. Nakagami, H. et al. Large-scale comparative phosphoproteomics identifies conserved phosphorylation sites in plants. Plant Physiol. 153, 1161–1174 (2010).

    Article  CAS  Google Scholar 

  26. Walley, J.W. et al. Reconstruction of protein networks from an atlas of maize seed proteotypes. Proc. Natl. Acad. Sci. USA 110, E4808–E4817 (2013).

    Article  CAS  Google Scholar 

  27. Roitinger, E. et al. Quantitative phosphoproteomics of the ataxia telangiectasia-mutated (ATM) and ataxia telangiectasia-mutated and rad3-related (ATR) dependent DNA damage response in Arabidopsis thaliana. Mol. Cell. Proteomics 14, 556–571 (2015).

    Article  CAS  Google Scholar 

  28. van Wijk, K.J., Friso, G., Walther, D. & Schulze, W.X. Meta-analysis of Arabidopsis thaliana phospho-proteomics data reveals compartmentalization of phosphorylation motifs. Plant Cell 26, 2367–2389 (2014).

    Article  CAS  Google Scholar 

  29. Deruyffelaere, C. et al. Ubiquitin-mediated proteasomal degradation of oleosins is involved in oil body mobilization during post-germinative seedling growth in Arabidopsis. Plant Cell Physiol. 56, 1374–1387 (2015).

    Article  CAS  Google Scholar 

  30. Lang, C. & Long, S.R. Transcriptomic analysis of sinorhizobium meliloti and Medicago truncatula symbiosis using nitrogen fixation-deficient nodules. Mol. Plant Microbe Interact. 28, 856–868 (2015).

    Article  CAS  Google Scholar 

  31. Moreau, M. et al. EDS1 contributes to nonhost resistance of Arabidopsis thaliana against Erwinia amylovora. Mol. Plant Microbe Interact. 25, 421–430 (2012).

    Article  CAS  Google Scholar 

  32. Udvardi, M. & Poole, P.S. Transport and metabolism in legume-rhizobia symbioses. Annu. Rev. Plant Biol. 64, 781–805 (2013).

    Article  CAS  Google Scholar 

  33. Ott, T. et al. Symbiotic leghemoglobins are crucial for nitrogen fixation in legume root nodules but not for general plant growth and development. Curr. Biol. 15, 531–535 (2005).

    Article  CAS  Google Scholar 

  34. Dixon, R. & Kahn, D. Genetic regulation of biological nitrogen fixation. Nat. Rev. Microbiol. 2, 621–631 (2004).

    Article  CAS  Google Scholar 

  35. Bhar, K. et al. Phosphorylation of leghemoglobin at S45 is most effective to disrupt the molecular environment of its oxygen binding pocket. Protein J. 34, 158–167 (2015).

    Article  CAS  Google Scholar 

  36. Stuart, J.M., Segal, E., Koller, D. & Kim, S.K. A gene-coexpression network for global discovery of conserved genetic modules. Science 302, 249–255 (2003).

    Article  CAS  Google Scholar 

  37. Gallardo, K., Le Signor, C., Vandekerckhove, J., Thompson, R.D. & Burstin, J. Proteomics of Medicago truncatula seed development establishes the time frame of diverse metabolic processes related to reserve accumulation. Plant Physiol. 133, 664–682 (2003).

    Article  CAS  Google Scholar 

  38. Niebel, Fde.C., Lescure, N., Cullimore, J.V. & Gamas, P. The Medicago truncatula MtAnn1 gene encoding an annexin is induced by Nod factors and during the symbiotic interaction with Rhizobium meliloti. Mol. Plant Microbe Interact. 11, 504–513 (1998).

    Article  Google Scholar 

  39. Barkan, A. & Small, I. Pentatricopeptide repeat proteins in plants. Annu. Rev. Plant Biol. 65, 415–442 (2014).

    Article  CAS  Google Scholar 

  40. Kurihara, D., Matsunaga, S., Omura, T., Higashiyama, T. & Fukui, K. Identification and characterization of plant Haspin kinase as a histone H3 threonine kinase. BMC Plant Biol. 11, 73 (2011).

    Article  CAS  Google Scholar 

  41. Nallu, S. et al. Regulatory patterns of a large family of defensin-like genes expressed in nodules of Medicago truncatula. PLoS One 8, e60355 (2013).

    Article  CAS  Google Scholar 

  42. Tiricz, H. et al. Antimicrobial nodule-specific cysteine-rich peptides induce membrane depolarization-associated changes in the transcriptome of Sinorhizobium meliloti. Appl. Environ. Microbiol. 79, 6737–6746 (2013).

    Article  CAS  Google Scholar 

  43. Farkas, A. et al. Medicago truncatula symbiotic peptide NCR247 contributes to bacteroid differentiation through multiple mechanisms. Proc. Natl. Acad. Sci. USA 111, 5183–5188 (2014).

    Article  CAS  Google Scholar 

  44. Penterman, J. et al. Host plant peptides elicit a transcriptional response to control the Sinorhizobium meliloti cell cycle during symbiosis. Proc. Natl. Acad. Sci. USA 111, 3561–3566 (2014).

    Article  CAS  Google Scholar 

  45. Gong, Z.Y., He, Z.S., Zhu, J.B., Yu, G.Q. & Zou, H.S. Sinorhizobium meliloti nifA mutant induces different gene expression profile from wild type in Alfalfa nodules. Cell Res. 16, 818–829 (2006).

    Article  CAS  Google Scholar 

  46. Marshall, E., Costa, L.M. & Gutierrez-Marcos, J. Cysteine-rich peptides (CRPs) mediate diverse aspects of cell-cell communication in plant reproduction and development. J. Exp. Bot. 62, 1677–1686 (2011).

    Article  CAS  Google Scholar 

  47. Poliakov, Anton et al. Large-scale label-free quantitative proteomics of the pea aphid-Buchnera symbiosis. Mol. Cell. Proteomics 10, M110.007039 (2011).

    Article  Google Scholar 

  48. Inoue, S. et al. Blue light-induced autophosphorylation of phototropin is a primary step for signaling. Proc. Natl. Acad. Sci. USA 105, 5626–5631 (2008).

    Article  CAS  Google Scholar 

  49. Vizcaíno, J.A. et al. ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nat. Biotechnol. 32, 223–226 (2014).

    Article  Google Scholar 

  50. Vizcaíno, J.A. et al. The PRoteomics IDEntifications (PRIDE) database and associated tools: status in 2013. Nucleic Acids Res. 41, D1063–D1069 (2013).

    Article  Google Scholar 

  51. Broughton, W.J. & Dilworth, M.J. Control of leghaemoglobin synthesis in snake beans. Biochem. J. 125, 1075–1080 (1971).

    Article  CAS  Google Scholar 

  52. Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).

    Article  CAS  Google Scholar 

  53. Marx, H., Lemeer, S., Klaeger, S., Rattei, T. & Kuster, B. MScDB: a mass spectrometry-centric protein sequence database for proteomics. J. Proteome Res. 12, 2386–2398 (2013).

    Article  CAS  Google Scholar 

  54. Bairoch, A. et al. The Universal Protein Resource (UniProt). Nucleic Acids Res. 33, D154–D159 (2005).

    Article  CAS  Google Scholar 

  55. Flicek, P. et al. Ensembl 2013. Nucleic Acids Res. 41, D48–D55 (2013).

    Article  CAS  Google Scholar 

  56. Tatusova, T., Ciufo, S., Fedorov, B., O'Neill, K. & Tolstoy, I. RefSeq microbial genomes database: new representation and annotation strategy. Nucleic Acids Res. 42, D553–D559 (2014).

    Article  CAS  Google Scholar 

  57. Tang, H. et al. An improved genome release (version Mt4.0) for the model legume Medicago truncatula. BMC Genomics 15, 312 (2014).

    Article  Google Scholar 

  58. Stanke, M. & Waack, S. Gene prediction with a hidden Markov model and a new intron submodel. Bioinformatics 19 (Suppl. 2), ii215–ii225 (2003).

    PubMed  Google Scholar 

  59. Cox, J. et al. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell. Proteomics 13, 2513–2526 (2014).

    Article  CAS  Google Scholar 

  60. Tyanova, S. et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 13, 731–740 (2016).

    Article  CAS  Google Scholar 

  61. Phanstiel, D.H. et al. Proteomic and phosphoproteomic comparison of human ES and iPS cells. Nat. Methods 8, 821–827 (2011).

    Article  CAS  Google Scholar 

  62. Olsen, J.V. et al. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127, 635–648 (2006).

    Article  CAS  Google Scholar 

  63. Wenger, C.D., Phanstiel, D.H., Lee, M.V., Bailey, D.J. & Coon, J.J. COMPASS: a suite of pre- and post-search proteomics software tools for OMSSA. Proteomics 11, 1064–1074 (2011).

    Article  CAS  Google Scholar 

  64. Krzywinski, M. et al. Circos: an information aesthetic for comparative genomics. Genome Res. 19, 1639–1645 (2009).

    Article  CAS  Google Scholar 

  65. Schug, J. et al. Promoter features related to tissue specificity as measured by Shannon entropy. Genome Biol. 6, R33 (2005).

    Article  Google Scholar 

  66. Ihaka, R. & Gentleman, R.R. A language for data analysis and graphics. J. Comput. Graph. Stat. 5, 299–314 (1996).

    Google Scholar 

  67. Roy, S. et al. Integrated module and gene-specific regulatory inference implicates upstream signaling networks. PLoS Comput. Biol. 9, e1003252 (2013).

    Article  Google Scholar 

  68. Meinshausen, N. & Bahlmann, P. Stability selection. J. R. Stat. Soc. Ser. A Stat. Soc. 72, 417–473 (2010).

    Article  Google Scholar 

  69. He, J. et al. The Medicago truncatula gene expression atlas web server. BMC Bioinformatics 10, 441 (2009).

    Article  Google Scholar 

  70. Bolstad, B.M., Irizarry, R.A., Astrand, M. & Speed, T.P. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19, 185–193 (2003).

    Article  CAS  Google Scholar 

  71. Thain, D., Tannenbaum, T. & Livny, M. Distributed computing in practice: the Condor experience. Concurr. Comput. 17, 323–356 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

We thank T. Rhoads, K. Overmyer, and A. Hebert for fruitful discussions. This work was supported mainly by funds from the NSF IOS-PGRP Grants 1237936 and 1546742. S.R. gratefully acknowledges support from an NSF CAREER award (DBI 1350677). C.E.M. was supported by an NLM training grant to the Computation and Informatics in Biology and Medicine Training Program (NLM T15LM007359). A.L.R. gratefully acknowledges support from a National Institutes of Health-funded Genomic Sciences Training Program (5T32HG002760), the ACS Division of Analytical Chemistry, and the Society of Analytical Chemists of Pittsburgh (SACP).

Author information

Authors and Affiliations

Authors

Contributions

H.M., C.E.M., D.J., J.-M.A., and J.J.C. conceived and designed the study. D.J., S. Rajasekar, and J.M., provided the plant material. C.E.M., A.L.R., and M.S.W. performed the proteomics experiments. H.M. and C.E.M. analyzed the data. H.M., C.E.M., D.J., K.G., and A.R.D.V. interpreted the data. N.W.K. and H.M. built the website. A.F.S., J.D.V., and S. Roy generated the regulatory network. The paper was written by H.M., C.E.M., D.J., M.R.S., K.G., A.R.D.V., J.-M.A., and J.J.C. and was edited by all authors.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Experimental design and workflow utilized to generate the WMG Protein Atlas.

(a) Illustration of the plant organs and nodule infection time points analyzed. (b) Proteomic workflow employed for the identification and quantification of proteins and PTMs.

Supplementary Figure 2 Correlation of LFQ and TMT quantification data.

Scatter plots illustrate the quantitative values obtained for proteins identified in both the deep sequencing (LFQ) and multiplexed (TMT) datasets for all plant organs analyzed. Note that for comparative purposes, quantitative values in both the LFQ and TMT datasets have been mean-normalized across all organs identified for a given protein. R2 values reflect the relative correlation of the data.

Supplementary Figure 3 Protein identification and characterization within the WMG Protein Atlas.

(a) Frequency of proteins to the number of organs each protein is associated with. (b) Heat maps illustrate the most significantly enriched gene ontology biological processes carried out by the core proteins within each organ. (c) Pair-wise Pearson correlation coefficients were calculated using protein abundance measurements obtained from the deep sequencing analysis (LFQ). Note that correlation analysis was performed twice: once using only those core proteins (bottom triangle) identified in every organ and once using only proteins not identified in every organ (top triangle). The color and size of each circle reflect the strength of the correlation (the darker and larger the circle, the greater the similarity between the two organs). Organ samples were clustered using hierarchical clustering.

Supplementary Figure 4 Organ-specific proteins and post-translational modifications.

(a) Distribution of inverted Shannon entropy scores obtained for proteins and post-translational modifications. Dashed lines indicate the 10% quantile cut-off for organ specificity. (b) Venn diagrams display protein identifications, indicating the number of protein groups observed with and without phosphorylated and/or acetylated residues in both M. truncatula and S. meliloti.

Supplementary Figure 5 Functional characterization of proteins and post-translational modifications (continued from Figure 2).

Bar plots illustrate the complete GO terms significantly enriched within the clusters in Figure 2. P-values associated with each cluster have been corrected for multiple hypotheses and are shown on the x-axes.

Supplementary Figure 6 Global motif analysis of M. truncatula protein phosphorylation.

Motif analysis performed within motif-x (v1.2) using all phospho-isoforms identified in the M. truncatula Protein Atlas. Sequences were manually aligned and all M. truncatula proteins identified in our study were used as background. A width of 13 residues, the minimum number of 50 (pSer and pThr) or 25 (pTyr) occurrences, and a significance of 1e-06 were specified before running motif-x. For each motif listed, the localized phosphorylated residue is indicated in lowercase underlined letters (s, t, or y), and x indicates any amino acid residue.

Supplementary Figure 7 Novel translation start discovered for calmodulin-binding hub protein within the nodule-specific network.

(a) Sequence alignment for the four most highly-scored protein identifications within the protein group representing the gene hub (performed using JalView). (b) MS/MS spectrum resulting in the peptide spectral match that maps to the new translation start of the calmodulin-binding protein.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 (PDF 1553 kb)

Supplementary Table 1

LFQ and TMT data from MaxQuant proteinGroups.txt and evidence.txt files (XLSX 12356 kb)

Supplementary Table 2

Novel and refined gene models from Augustus gene predictions (XLSX 82 kb)

Supplementary Table 3

ANOVA analysis results for TMT protein, phospho and acetyl data (XLSX 767 kb)

Supplementary Code (ZIP 5 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marx, H., Minogue, C., Jayaraman, D. et al. A proteomic atlas of the legume Medicago truncatula and its nitrogen-fixing endosymbiont Sinorhizobium meliloti. Nat Biotechnol 34, 1198–1205 (2016). https://doi.org/10.1038/nbt.3681

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.3681

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research