Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Collective emission of matter-wave jets from driven Bose–Einstein condensates

Abstract

Scattering is used to probe matter and its interactions in all areas of physics. In ultracold atomic gases, control over pairwise interactions enables us to investigate scattering in quantum many-body systems1. Previous experiments on colliding Bose–Einstein condensates have revealed matter–wave interference2,3, haloes of scattered atoms4,5, four-wave mixing6,7 and correlations between counter-propagating pairs8,9,10. However, a regime with strong stimulation of spontaneous collisions11,12,13,14,15,16,17,18,19,20 analogous to superradiance21,22,23 has proved elusive. In this regime, the collisions rapidly produce highly correlated states with macroscopic population. Here we find that runaway stimulated collisions in Bose–Einstein condensates with periodically modulated interaction strength cause the collective emission of matter-wave jets that resemble fireworks. Jets appear only above a threshold modulation amplitude and their correlations are invariant even when the number of ejected atoms grows exponentially. Hence, we show that the structures and atom occupancies of the jets stem from the quantum fluctuations of the condensate. Our findings demonstrate the conditions required for runaway stimulated collisions and reveal the quantum nature of matter-wave emission.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Two-dimensional emission of matter-wave jets from Bose–Einstein condensates with modulated interactions.
Figure 2: Threshold for jet formation.
Figure 3: Correlations of emitted jets.
Figure 4: Angular width of the jets.

Similar content being viewed by others

References

  1. Chin, C., Julienne, P. & Tiesinga, E. Feshbach resonances in ultracold gases. Rev. Mod. Phys. 82, 1225–1286 (2010)

    Article  ADS  CAS  Google Scholar 

  2. Andrews, M. R. et al. Observation of interference between two Bose condensates. Science 275, 637–641 (1997)

    Article  CAS  Google Scholar 

  3. Anderson, B. P. & Kasevich, M. A. Macroscopic quantum interference from atomic tunnel arrays. Science 282, 1686–1689 (1998)

    Article  ADS  CAS  Google Scholar 

  4. Chikkatur, A. P. et al. Suppression and enhancement of impurity scattering in a Bose-Einstein condensate. Phys. Rev. Lett. 85, 483–486 (2000)

    Article  ADS  CAS  Google Scholar 

  5. Buggle, C., Léonard, J., Von Klitzing, W. & Walraven, J. T. M. Interferometric determination of the s and d-wave scattering amplitudes in 87Rb. Phys. Rev. Lett. 93, 173202 (2004)

    Article  ADS  Google Scholar 

  6. Deng, L. et al. Four-wave mixing with matter waves. Nature 398, 218–220 (1999)

    Article  ADS  CAS  Google Scholar 

  7. Vogels, J. M., Xu, K. & Ketterle, W. Generation of macroscopic pair-correlated atomic beams by four-wave mixing in Bose-Einstein condensates. Phys. Rev. Lett. 89, 020401 (2002)

    Article  ADS  CAS  Google Scholar 

  8. Perrin, A. et al. Observation of atom pairs in spontaneous four-wave mixing of two colliding Bose-Einstein condensates. Phys. Rev. Lett. 99, 150405 (2007)

    Article  ADS  CAS  Google Scholar 

  9. Perrin, A. et al. Atomic four-wave mixing via condensate collisions. New J. Phys. 10, 045021 (2008)

    Article  ADS  Google Scholar 

  10. Jaskula, J. C. et al. Sub-poissonian number differences in four-wave mixing of matter waves. Phys. Rev. Lett. 105, 190402 (2010)

    Article  ADS  Google Scholar 

  11. Pu, H. & Meystre, P. Creating macroscopic atomic Einstein-Podolsky-Rosen states from Bose-Einstein condensates. Phys. Rev. Lett. 85, 3987–3990 (2000)

    Article  ADS  CAS  Google Scholar 

  12. Duan, L. M., Sørensen, A., Cirac, J. I. & Zoller, P. Squeezing and entanglement of atomic beams. Phys. Rev. Lett. 85, 3991–3994 (2000)

    Article  ADS  CAS  Google Scholar 

  13. Vardi, A. & Moore, M. G. Directional “superradiant” collisions: bosonic amplification of atom pairs emitted from an elongated Bose-Einstein condensate. Phys. Rev. Lett. 89, 090403 (2002)

    Article  ADS  CAS  Google Scholar 

  14. Bach, R., Trippenbach, M. & Rza¸z˙ewski, K. Spontaneous emission of atoms via collisions of Bose-Einstein condensates. Phys. Rev. A 65, 063605 (2002)

    Article  ADS  Google Scholar 

  15. Zin´, P., Chweden´czuk, J., Veitia, A., Rza¸z˙ewski, K. & Trippenbach, M. Quantum multimode model of elastic scattering from Bose-Einstein condensates. Phys. Rev. Lett. 94, 200401 (2005)

    Article  ADS  Google Scholar 

  16. Norrie, A. A., Ballagh, R. J. & Gardiner, C. W. Quantum turbulence in condensate collisions: An application of the classical field method. Phys. Rev. Lett. 94, 040401 (2005)

    Article  ADS  CAS  Google Scholar 

  17. Ögren, M. & Kheruntsyan, K. V. Atom-atom correlations in colliding Bose-Einstein condensates. Phys. Rev. A 79, 021606 (2009)

    Article  ADS  Google Scholar 

  18. Deuar, P. et al. Anisotropy in s-wave Bose-Einstein condensate collisions and its relationship to superradiance. Phys. Rev. A 90, 033613 (2014)

    Article  ADS  Google Scholar 

  19. Wasak, T., Szan´kowski, P., Bücker, R., Chweden´czuk, J. & Trippenbach, M. Bogoliubov theory for atom scattering into separate regions. New J. Phys. 16, 013041 (2014)

    Article  ADS  Google Scholar 

  20. RuGway, W., Hodgman, S. S., Dall, R. G., Johnsson, M. T. & Truscott, A. G. Correlations in amplified four-wave mixing of matter waves. Phys. Rev. Lett. 107, 075301 (2011)

    Article  ADS  Google Scholar 

  21. Inouye, S. et al. Superradiant Rayleigh scattering from a Bose-Einstein condensate. Science 285, 571–574 (1999)

    Article  CAS  Google Scholar 

  22. Moore, M. G. & Meystre, P. Theory of superradiant scattering of laser light from Bose-Einstein condensates. Phys. Rev. Lett. 83, 5202–5205 (1999)

    Article  ADS  CAS  Google Scholar 

  23. Schneble, D. et al. The onset of matter-wave amplification in a superradiant Bose-Einstein condensate. Science 300, 475–478 (2003)

    Article  ADS  CAS  Google Scholar 

  24. Pollack, S. E. et al. Collective excitation of a Bose-Einstein condensate by modulation of the atomic scattering length. Phys. Rev. A 81, 053627 (2010)

    Article  ADS  Google Scholar 

  25. Bookjans, E. M., Hamley, C. D. & Chapman, M. S. Strong quantum spin correlations observed in atomic spin mixing. Phys. Rev. Lett. 107, 210406 (2011)

    Article  ADS  Google Scholar 

  26. Lucke, B. et al. Twin matter waves for interferometry beyond the classical limit. Science 334, 773–776 (2011)

    Article  ADS  CAS  Google Scholar 

  27. Gross, C. et al. Atomic homodyne detection of continuous-variable entangled twin-atom states. Nature 480, 219–223 (2011)

    Article  ADS  CAS  Google Scholar 

  28. Rapp, A., Deng, X. & Santos, L. Ultracold lattice gases with periodically modulated interactions. Phys. Rev. Lett. 109, 203005 (2012)

    Article  ADS  Google Scholar 

  29. Meinert, F., Mark, M. J., Lauber, K., Daley, A. J. & Nägerl, H.-C. Floquet engineering of correlated tunneling in the Bose-Hubbard model with ultracold atoms. Phys. Rev. Lett. 116, 205301 (2016)

    Article  ADS  CAS  Google Scholar 

  30. Hung, C.-L. et al. Extracting density-density correlations from in situ images of atomic quantum gases. New J. Phys. 13, 075019 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank E. Berg for discussions. L.W.C. is supported by the Grainger graduate fellowship. A.G. acknowledges support from a MRSEC-funded Kadanoff-Rice fellowship. This work is supported by the University of Chicago Materials Research Science and Engineering Center, which is funded by the National Science Foundation (DMR-1420709), NSF grant PHY-1511696, and the Army Research Office-Multidisciplinary Research Initiative under grant W911NF-14-1-0003.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed extensively to the work presented in this paper. L.W.C. and A.G. conceived and performed the experiments. L.W.C. analysed the data and developed the theory. L.W.C. and A.G. wrote the manuscript. L.F. contributed insights and discussions on the experiment and manuscript. C.C. supervised the project.

Corresponding author

Correspondence to Cheng Chin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clark, L., Gaj, A., Feng, L. et al. Collective emission of matter-wave jets from driven Bose–Einstein condensates. Nature 551, 356–359 (2017). https://doi.org/10.1038/nature24272

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature24272

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing