Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The close environments of accreting massive black holes are shaped by radiative feedback

Abstract

The majority of the accreting supermassive black holes in the Universe are obscured by large columns of gas and dust1,2,3. The location and evolution of this obscuring material have been the subject of intense research in the past decades4,5, and are still debated. A decrease in the covering factor of the circumnuclear material with increasing accretion rates has been found by studies across the electromagnetic spectrum1,6,7,8. The origin of this trend may be driven by the increase in the inner radius of the obscuring material with incident luminosity, which arises from the sublimation of dust9; by the gravitational potential of the black hole10; by radiative feedback11,12,13,14; or by the interplay between outflows and inflows15. However, the lack of a large, unbiased and complete sample of accreting black holes, with reliable information on gas column density, luminosity and mass, has left the main physical mechanism that regulates obscuration unclear. Here we report a systematic multi-wavelength survey of hard-X-ray-selected black holes that reveals that radiative feedback on dusty gas is the main physical mechanism that regulates the distribution of the circumnuclear material. Our results imply that the bulk of the obscuring dust and gas is located within a few to tens of parsecs of the accreting supermassive black hole (within the sphere of influence of the black hole), and that it can be swept away even at low radiative output rates. The main physical driver of the differences between obscured and unobscured accreting black holes is therefore their mass-normalized accretion rate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Relation between the fraction of obscured AGN and the Eddington ratio.
Figure 2: Relation between the fraction of obscured AGN and the luminosity for different ranges of the Eddington ratio.
Figure 3: Eddington ratio–column density diagram.
Figure 4: Radiation-regulated unification of AGN.

Similar content being viewed by others

References

  1. Burlon, D. et al. Three-year Swift-BAT survey of active galactic nuclei: reconciling theory and observations? Astrophys. J. 728, 58 (2011)

    ADS  Google Scholar 

  2. Ueda, Y., Akiyama, M., Hasinger, G., Miyaji, T. & Watson, M. G. Toward the standard population synthesis model of the X-ray background: evolution of X-Ray luminosity and absorption functions of active galactic nuclei including Compton-thick populations. Astrophys. J. 786, 104 (2014)

    ADS  Google Scholar 

  3. Ricci, C. et al. Compton-thick accretion in the local Universe. Astrophys. J. 815, L13 (2015)

    ADS  Google Scholar 

  4. Elitzur, M. & Shlosman, I. The AGN-obscuring torus: the end of the “doughnut” paradigm? Astrophys. J. 648, L101–L104 (2006)

    ADS  CAS  Google Scholar 

  5. Merloni, A. et al. The incidence of obscuration in active galactic nuclei. Mon. Not. R. Astron. Soc. 437, 3550–3567 (2014)

    ADS  Google Scholar 

  6. Ueda, Y., Akiyama, M., Ohta, K. & Miyaji, T. Cosmological evolution of the hard X-ray active galactic nucleus luminosity function and the origin of the hard X-ray background. Astrophys. J. 598, 886–908 (2003)

    ADS  CAS  Google Scholar 

  7. Maiolino, R. et al. Dust covering factor, silicate emission, and star formation in luminous QSOs. Astron. Astrophys. 468, 979–992 (2007)

    ADS  CAS  Google Scholar 

  8. Treister, E., Krolik, J. H. & Dullemond, C. Measuring the fraction of obscured quasars by the infrared luminosity of unobscured quasars. Astrophys. J. 679, 140–148 (2008)

    ADS  CAS  Google Scholar 

  9. Lawrence, A. The relative frequency of broad-lined and narrow-lined active galactic nuclei—implications for unified schemes. Mon. Not. R. Astron. Soc. 252, 586–592 (1991)

    ADS  CAS  Google Scholar 

  10. Lamastra, A., Perola, G. C. & Matt, G. A model for the X-ray absorption in Compton-thin AGN. Astron. Astrophys. 449, 551–558 (2006)

    ADS  CAS  Google Scholar 

  11. Fabian, A. C., Celotti, A. & Erlund, M. C. Radiative pressure feedback by a quasar in a galactic bulge. Mon. Not. R. Astron. Soc. 373, L16–L20 (2006)

    ADS  Google Scholar 

  12. Menci, N., Fiore, F., Puccetti, S. & Cavaliere, A. The blast wave model for AGN feedback: effects on AGN obscuration. Astrophys. J. 686, 219–229 (2008)

    ADS  CAS  Google Scholar 

  13. Fabian, A. C., Vasudevan, R. V. & Gandhi, P. The effect of radiation pressure on dusty absorbing gas around active galactic nuclei. Mon. Not. R. Astron. Soc. 385, L43–L47 (2008)

    ADS  Google Scholar 

  14. Fabian, A. C., Vasudevan, R. V., Mushotzky, R. F., Winter, L. M. & Reynolds, C. S. Radiation pressure and absorption in AGN: results from a complete unbiased sample from Swift. Mon. Not. R. Astron. Soc. 394, L89–L92 (2009)

    ADS  Google Scholar 

  15. Wada, K. Obscuring fraction of active galactic nuclei: implications from radiation-driven fountain models. Astrophys. J. 812, 82 (2015)

    ADS  Google Scholar 

  16. Gehrels, N. et al. The Swift gamma-ray burst mission. Astrophys. J. 611, 1005–1020 (2004)

    ADS  CAS  Google Scholar 

  17. Barthelmy, S. D. et al. The Burst Alert Telescope (BAT) on the SWIFT Midex mission. Space Sci. Rev. 120, 143–164 (2005)

    ADS  Google Scholar 

  18. Ricci, C. et al. BAT AGN Spectroscopic Survey — V. X-ray properties of the Swift/BAT 70-month AGN catalog. Astrophys. J. Suppl. Ser. (in the press)

  19. Koss, M. J. et al. BAT AGN spectroscopic survey I: spectral measurements, derived quantities, and AGN demographics. Preprint at https://arxiv.org/abs/1707.08123 (2017)

  20. Cameron, E. On the estimation of confidence intervals for binomial population proportions in astronomy: the simplicity and superiority of the Bayesian approach. Publ. Astron. Soc. Aust. 28, 128–139 (2011)

    ADS  Google Scholar 

  21. Antonucci, R. Unified models for active galactic nuclei and quasars. Annu. Rev. Astron. Astrophys. 31, 473–521 (1993)

    ADS  CAS  Google Scholar 

  22. Hopkins, P. F. et al. A unified, merger-driven model of the origin of starbursts, quasars, the cosmic X-ray background, supermassive black holes, and galaxy spheroids. Astrophys. J. Suppl. Ser. 163, 1–49 (2006)

    ADS  CAS  Google Scholar 

  23. Satyapal, S. et al. Galaxy pairs in the Sloan Digital Sky Survey— IX. Merger-induced AGN activity as traced by the Wide-field Infrared Survey Explorer. Mon. Not. R. Astron. Soc. 441, 1297–1304 (2014)

    ADS  Google Scholar 

  24. Kocevski, D. D. et al. Are Compton-thick AGNs the missing link between mergers and black hole growth? Astrophys. J. 814, 104 (2015)

    ADS  Google Scholar 

  25. Ricci, C. et al. Growing supermassive black holes in the late stages of galaxy mergers are heavily obscured. Mon. Not. R. Astron. Soc. 468, 1273–1299 (2017)

    ADS  CAS  Google Scholar 

  26. Jaffe, W. et al. The central dusty torus in the active nucleus of NGC 1068. Nature 429, 47–49 (2004)

    ADS  CAS  Google Scholar 

  27. Hönig, S. F. et al. Dust in the polar region as a major contributor to the infrared emission of active galactic nuclei. Astrophys. J. 771, 87 (2013)

    ADS  Google Scholar 

  28. Asmus, D., Hönig, S. F. & Gandhi, P. The subarcsecond mid-infrared view of local active galactic nuclei. III. Polar dust emission. Astrophys. J. 822, 109 (2016)

    ADS  Google Scholar 

  29. Fabian, A. C. Observational evidence of active galactic nuclei feedback. Annu. Rev. Astron. Astrophys. 50, 455–489 (2012)

    ADS  CAS  Google Scholar 

  30. Kormendy, J. & Ho, L. C. Coevolution (or not) of supermassive black holes and host galaxies. Annu. Rev. Astron. Astrophys. 51, 511–653 (2013)

    ADS  CAS  Google Scholar 

  31. Krimm, H. A. et al. The Swift/BAT hard X-ray transient monitor. Astrophys. J. Suppl. Ser. 209, 14 (2013)

    ADS  Google Scholar 

  32. Baumgartner, W. H. et al. The 70 month Swift-BAT all-sky hard X-ray survey. Astrophys. J. Suppl. Ser. 207, 19 (2013)

    ADS  Google Scholar 

  33. Massaro, E. et al. The 5th edition of the Roma-BZCAT. A short presentation. Astrophys. Space Sci. 357, 75 (2015)

    ADS  Google Scholar 

  34. Koss, M. J. et al. A new population of Compton-thick AGNs identified using the spectral curvature above 10 keV. Astrophys. J. 825, 85 (2016)

    ADS  Google Scholar 

  35. Akylas, A. et al. Compton-thick AGN in the 70-month Swift-BAT all-sky hard x-ray survey: a Bayesian approach. Astron. Astrophys. 594, A73 (2016)

    Google Scholar 

  36. Lamperti, I. et al. BAT AGN spectroscopic survey—IV: near-infrared coronal lines, hidden broad lines, and correlation with hard X-ray emission. Mon. Not. R. Astron. Soc. 467, 540–572 (2017)

    ADS  CAS  Google Scholar 

  37. Berney, S. et al. BAT AGN spectroscopic survey—II. X-ray emission and high-ionization optical emission lines. Mon. Not. R. Astron. Soc. 454, 3622–3634 (2015)

    ADS  CAS  Google Scholar 

  38. Ueda, Y. et al. [O iii] λ5007 and X-ray properties of a complete sample of hard X-ray selected AGNs in the local Universe. Astrophys. J. 815, 1 (2015)

    ADS  Google Scholar 

  39. Oh, K. et al. BAT AGN spectroscopic survey—III. An observed link between AGN Eddington ratio and narrow-emission-line ratios. Mon. Not. R. Astron. Soc. 464, 1466–1473 (2017)

    ADS  CAS  Google Scholar 

  40. Trakhtenbrot, B. et al. The Swift/BAT AGN spectroscopic survey (BASS)—VI. The ΓX–L/LEdd relation. Mon. Not. R. Astron. Soc. 470, 800–814 (2017)

    ADS  CAS  Google Scholar 

  41. Magdziarz, P. & Zdziarski, A. A. Angle-dependent Compton reflection of X-rays and gamma-rays. Mon. Not. R. Astron. Soc. 273, 837–848 (1995)

    ADS  Google Scholar 

  42. Nandra, K. & Pounds, K. A. GINGA observations of the X-Ray spectra of Seyfert galaxies. Mon. Not. R. Astron. Soc. 268, 405–429 (1994)

    ADS  CAS  Google Scholar 

  43. Shu, X. W., Yaqoob, T. & Wang, J. X. The cores of the Fe Kα lines in active galactic nuclei: an extended Chandra high energy grating sample. Astrophys. J. Suppl. Ser. 187, 581–606 (2010)

    ADS  CAS  Google Scholar 

  44. Ricci, C. et al. The narrow Fe Kα line and the molecular torus in active galactic nuclei: an IR/X-ray view. Astron. Astrophys. 567, A142 (2014)

    Google Scholar 

  45. Ueda, Y. et al. Suzaku observations of active galactic nuclei detected in the Swift BAT survey: discovery of a “new type” of buried supermassive black holes. Astrophys. J. 664, L79–L82 (2007)

    ADS  CAS  Google Scholar 

  46. Kawamuro, T ., Ueda, Y ., Tazaki, F ., Ricci, C & Terashima, Y. Suzaku observations of moderately obscured (Compton-thin) active galactic nuclei selected by Swift/BAT hard X-ray survey. Astrophys. J. Suppl. Ser. 225, 14 (2016)

    ADS  Google Scholar 

  47. Brightman, M. & Nandra, K. An XMM-Newton spectral survey of 12 μm selected galaxies—I. X-ray data. Mon. Not. R. Astron. Soc. 413, 1206–1235 (2011)

    ADS  CAS  Google Scholar 

  48. Bentz, M. C. & Katz, S. The AGN black hole mass database. Publ. Astron. Soc. Pac. 127, 67 (2015)

    ADS  Google Scholar 

  49. Trakhtenbrot, B. & Netzer, H. Black hole growth to z = 2—I. Improved virial methods for measuring MBH and L/LEdd . Mon. Not. R. Astron. Soc. 427, 3081–3102 (2012)

    ADS  CAS  Google Scholar 

  50. Oh, K. et al. A new catalog of type 1 AGNs and its implications on the AGN unified model. Astrophys. J. Suppl. Ser. 219, 1 (2015)

    ADS  Google Scholar 

  51. Greene, J. E. & Ho, L. C. Estimating black hole masses in active galaxies using the Hα emission line. Astrophys. J. 630, 122–129 (2005)

    ADS  CAS  Google Scholar 

  52. Shen, Y. The mass of quasars. Bull. Astron. Soc. India 41, 61–115 (2013)

    ADS  CAS  Google Scholar 

  53. Peterson, B. M. Measuring the masses of supermassive black holes. Space Sci. Rev. 183, 253–275 (2014)

    ADS  Google Scholar 

  54. Gebhardt, K. et al. A relationship between nuclear black hole mass and galaxy velocity dispersion. Astrophys. J. 539, L13–L16 (2000)

    ADS  Google Scholar 

  55. Vasudevan, R. V. & Fabian, A. C. Simultaneous X-ray/optical/UV snapshots of active galactic nuclei from XMM-Newton: spectral energy distributions for the reverberation mapped sample. Mon. Not. R. Astron. Soc. 392, 1124–1140 (2009)

    ADS  CAS  Google Scholar 

  56. Hönig, S. F. & Beckert, T. Active galactic nuclei dust tori at low and high luminosities. Mon. Not. R. Astron. Soc. 380, 1172–1176 (2007)

    ADS  Google Scholar 

  57. Ferland, G. J. Hazy, A Brief Introduction to Cloudy 84 (1993)

  58. Liu, Y. & Zhang, S. N. Dusty torus formation by anisotropic radiative pressure feedback of active galactic nuclei. Astrophys. J. 728, L44 (2011)

    ADS  Google Scholar 

  59. Raimundo, S. I. et al. Radiation pressure, absorption and AGN feedback in the Chandra deep fields. Mon. Not. R. Astron. Soc. 408, 1714–1720 (2010)

    ADS  Google Scholar 

  60. Vasudevan, R. V. et al. Three active galactic nuclei close to the effective Eddington limit for dusty gas. Mon. Not. R. Astron. Soc. 431, 3127–3138 (2013)

    ADS  CAS  Google Scholar 

  61. Lawrence, A. & Elvis, M. Obscuration and the various kinds of Seyfert galaxies. Astrophys. J. 256, 410–426 (1982)

    ADS  CAS  Google Scholar 

  62. Simpson, C. The luminosity dependence of the type 1 active galactic nucleus fraction. Mon. Not. R. Astron. Soc. 360, 565–572 (2005)

    ADS  CAS  Google Scholar 

  63. La Franca, F. et al. The HELLAS2XMM survey. VII. The hard X-ray luminosity function of AGNs up to z = 4: more absorbed AGNs at low luminosities and high redshifts. Astrophys. J. 635, 864–879 (2005)

    ADS  Google Scholar 

  64. Sazonov, S., Revnivtsev, M., Krivonos, R., Churazov, E. & Sunyaev, R. Hard X-ray luminosity function and absorption distribution of nearby AGN: INTEGRAL all-sky survey. Astron. Astrophys. 462, 57–66 (2007)

    ADS  CAS  Google Scholar 

  65. Hasinger, G. Absorption properties and evolution of active galactic nuclei. Astron. Astrophys. 490, 905–922 (2008)

    ADS  CAS  Google Scholar 

  66. Della Ceca, R. et al. The cosmological properties of AGN in the XMM-Newton hard bright survey. Astron. Astrophys. 487, 119–130 (2008)

    ADS  CAS  Google Scholar 

  67. Beckmann, V. et al. The second INTEGRAL AGN catalogue. Astron. Astrophys. 505, 417–439 (2009)

    ADS  CAS  Google Scholar 

  68. Ueda, Y. et al. Revisit of local X-ray luminosity function of active galactic nuclei with the MAXI extragalactic survey. Publ. Astron. Soc. Jpn 63, S937–S945 (2011)

    ADS  Google Scholar 

  69. Brightman, M. & Nandra, K. An XMM-Newton spectral survey of 12 μm selected galaxies—II. Implications for AGN selection and unification. Mon. Not. R. Astron. Soc. 414, 3084–3104 (2011)

    ADS  CAS  Google Scholar 

  70. Buchner, J. et al. Obscuration-dependent evolution of active galactic nuclei. Astrophys. J. 802, 89 (2015)

    ADS  Google Scholar 

  71. Aird, J. et al. The evolution of the X-ray luminosity functions of unabsorbed and absorbed AGNs out to z 5. Mon. Not. R. Astron. Soc. 451, 1892–1927 (2015)

    ADS  Google Scholar 

  72. Georgakakis, A. et al. X-ray constraints on the fraction of obscured active galactic nuclei at high accretion luminosities. Mon. Not. R. Astron. Soc. 469, 3232–3251 (2017)

    ADS  CAS  Google Scholar 

  73. Ricci, C. et al. Luminosity-dependent unification of active galactic nuclei and the X-ray Baldwin effect. Astron. Astrophys. 553, A29 (2013)

    Google Scholar 

  74. Iwasawa, K. & Taniguchi, Y. The X-ray Baldwin effect. Astrophys. J. 413, L15–L18 (1993)

    ADS  CAS  Google Scholar 

  75. Bianchi, S., Guainazzi, M., Matt, G. & Fonseca Bonilla, N. On the Iwasawa-Taniguchi effect of radio-quiet AGN. Astron. Astrophys. 467, L19–L22 (2007)

    ADS  CAS  Google Scholar 

  76. Ricci, C. et al. Iron Kα emission in type-I and type-II active galactic nuclei. Mon. Not. R. Astron. Soc. 441, 3622–3633 (2014)

    ADS  CAS  Google Scholar 

  77. Tueller, J. et al. Swift BAT survey of AGNs. Astrophys. J. 681, 113–127 (2008)

    ADS  CAS  Google Scholar 

  78. Gandhi, P. et al. Resolving the mid-infrared cores of local Seyferts. Astron. Astrophys. 502, 457–472 (2009)

    ADS  Google Scholar 

  79. Assef, R. J. et al. Mid-infrared selection of active galactic nuclei with the Wide-field Infrared Survey Explorer. II. Properties of WISE-selected active galactic nuclei in the ND-WFS Boötes Field. Astrophys. J. 772, 26 (2013)

    ADS  Google Scholar 

  80. Lusso, E. et al. The obscured fraction of active galactic nuclei in the XMM-COSMOS survey: a spectral energy distribution perspective. Astrophys. J. 777, 86 (2013)

    ADS  Google Scholar 

  81. Toba, Y. et al. Luminosity and redshift dependence of the covering factor of active galactic nuclei viewed with WISE and Sloan Digital Sky Survey. Astrophys. J. 788, 45 (2014)

    ADS  Google Scholar 

  82. Lacy, M. et al. The Spitzer mid-infrared AGN Survey. II. The demographics and cosmic evolution of the AGN population. Astrophys. J. 802, 102 (2015)

    ADS  Google Scholar 

  83. Stalevski, M. et al. The dust covering factor in active galactic nuclei. Mon. Not. R. Astron. Soc. 458, 2288–2302 (2016)

    ADS  Google Scholar 

  84. Mateos, S. et al. X-ray absorption, nuclear infrared emission, and dust covering factors of AGNs: testing unification schemes. Astrophys. J. 819, 166 (2016)

    ADS  Google Scholar 

  85. Ichikawa, K. et al. The complete infrared view of active galactic nuclei from the 70 month Swift/BAT catalog. Astrophys. J. 835, 74 (2017)

    ADS  Google Scholar 

  86. Netzer, H. et al. Star formation black hole growth and dusty tori in the most luminous AGNs at z = 2–3.5. Astrophys. J. 819, 123 (2016)

    ADS  Google Scholar 

  87. Hönig, S. F., Beckert, T., Ohnaka, K. & Weigelt, G. Radiative transfer modeling of three-dimensional clumpy AGN tori and its application to NGC 1068. Astron. Astrophys. 452, 459–471 (2006)

    ADS  Google Scholar 

  88. Nenkova, M., Sirocky, M. M., Nikutta, R., Ivezic´, Z. & Elitzur, M. AGN dusty tori. II. Observational implications of clumpiness. Astrophys. J. 685, 160–180 (2008)

    ADS  Google Scholar 

  89. Nenkova, M., Sirocky, M. M., Ivezic´, Z. & Elitzur, M. AGN dusty tori. I. Handling of clumpy media. Astrophys. J. 685, 147–159 (2008)

    ADS  Google Scholar 

  90. Schartmann, M. et al. Three-dimensional radiative transfer models of clumpy tori in Seyfert galaxies. Astron. Astrophys. 482, 67–80 (2008)

    ADS  CAS  Google Scholar 

  91. Hönig, S. F. & Kishimoto, M. The dusty heart of nearby active galaxies. II. From clumpy torus models to physical properties of dust around AGN. Astron. Astrophys. 523, A27 (2010)

    ADS  Google Scholar 

  92. Hönig, S. F. et al. The dusty heart of nearby active galaxies. I. High-spatial resolution mid-IR spectro-photometry of Seyfert galaxies. Astron. Astrophys. 515, A23 (2010)

    Google Scholar 

  93. Stalevski, M., Fritz, J., Baes, M., Nakos, T. & Popovic´, L. Cˇ. 3D radiative transfer modelling of the dusty tori around active galactic nuclei as a clumpy two-phase medium. Mon. Not. R. Astron. Soc. 420, 2756–2772 (2012)

    ADS  Google Scholar 

  94. Siebenmorgen, R., Heymann, F. & Efstathiou, A. Self-consistent two-phase AGN torus models. SED library for observers. Astron. Astrophys. 583, A120 (2015)

    ADS  Google Scholar 

  95. Mor, R., Netzer, H. & Elitzur, M. Dusty structure around type-I active galactic nuclei: clumpy torus narrow-line region and near-nucleus hot dust. Astrophys. J. 705, 298–313 (2009)

    ADS  CAS  Google Scholar 

  96. Alonso-Herrero, A. et al. Torus and active galactic nucleus properties of nearby Seyfert galaxies: results from fitting infrared spectral energy distributions and spectroscopy. Astrophys. J. 736, 82 (2011)

    ADS  Google Scholar 

  97. Ramos Almeida, C. et al. Testing the unification model for active galactic nuclei in the infrared: are the obscuring tori of type 1 and 2 Seyferts different? Astrophys. J. 731, 92 (2011)

    ADS  Google Scholar 

  98. Elitzur, M. On the unification of active galactic nuclei. Astrophys. J. 747, L33 (2012)

    ADS  Google Scholar 

  99. Suganuma, M. et al. Reverberation measurements of the inner radius of the dust torus in nearby Seyfert 1 galaxies. Astrophys. J. 639, 46–63 (2006)

    ADS  CAS  Google Scholar 

  100. Kishimoto, M., Hönig, S. F., Beckert, T. & Weigelt, G. The innermost region of AGN tori: implications from the HST/NICMOS type 1 point sources and near-IR reverberation. Astron. Astrophys. 476, 713–721 (2007)

    ADS  CAS  Google Scholar 

  101. Kishimoto, M. et al. Mapping the radial structure of AGN tori. Astron. Astrophys. 536, A78 (2011)

    Google Scholar 

  102. Davies, R. I. et al. Insights on the dusty torus and neutral torus from optical and X-ray obscuration in a complete volume limited hard X-ray AGN sample. Astrophys. J. 806, 127 (2015)

    ADS  Google Scholar 

  103. Sazonov, S., Churazov, E. & Krivonos, R. Does the obscured AGN fraction really depend on luminosity? Mon. Not. R. Astron. Soc. 454, 1202–1220 (2015)

    ADS  CAS  Google Scholar 

  104. Netzer, H. Revisiting the unified model of active galactic nuclei. Annu. Rev. Astron. Astrophys. 53, 365–408 (2015)

    ADS  CAS  Google Scholar 

  105. Brandt, W. N. & Alexander, D. M. Cosmic X-ray surveys of distant active galaxies. The demographics, physics, and ecology of growing supermassive black holes. Astron. Astrophys. Rev. 23, 1 (2015)

    ADS  Google Scholar 

  106. Kawamuro, T., Ueda, Y., Tazaki, F., Terashima, Y. & Mushotzky, R. Study of Swift/Bat selected low-luminosity active galactic nuclei observed with Suzaku. Astrophys. J. 831, 37 (2016)

    ADS  Google Scholar 

  107. Winter, L. M., Mushotzky, R. F., Reynolds, C. S. & Tueller, J. X-ray spectral properties of the BAT AGN sample. Astrophys. J. 690, 1322–1349 (2009)

    ADS  CAS  Google Scholar 

  108. Lusso, E. et al. Bolometric luminosities and Eddington ratios of X-ray selected active galactic nuclei in the XMM-COSMOS survey. Mon. Not. R. Astron. Soc. 425, 623–640 (2012)

    ADS  Google Scholar 

  109. Buchner, J. & Bauer, F. E. Galaxy gas as obscurer—II. Separating the galaxy-scale and nuclear obscurers of active galactic nuclei. Mon. Not. R. Astron. Soc. 465, 4348–4362 (2017)

    ADS  CAS  Google Scholar 

  110. Koss, M., Mushotzky, R., Veilleux, S. & Winter, L. Merging and clustering of the Swift BAT AGN sample. Astrophys. J. 716, L125–L130 (2010)

    ADS  CAS  Google Scholar 

  111. Marconi, A. & Hunt, L. K. The relation between black hole mass, bulge mass, and near-infrared luminosity. Astrophys. J. 589, L21–L24 (2003)

    ADS  Google Scholar 

  112. Vasudevan, R. V. & Fabian, A. C. Piecing together the X-ray background: bolometric corrections for active galactic nuclei. Mon. Not. R. Astron. Soc. 381, 1235–1251 (2007)

    ADS  CAS  Google Scholar 

  113. Peebles, P. J. E. Star distribution near a collapsed object. Astrophys. J. 178, 371–376 (1972)

    ADS  Google Scholar 

  114. Brightman, M. et al. Compton thick active galactic nuclei in Chandra surveys. Mon. Not. R. Astron. Soc. 443, 1999–2017 (2014)

    ADS  CAS  Google Scholar 

  115. Tacconi, L. J. et al. High molecular gas fractions in normal massive star-forming galaxies in the young Universe. Nature 463, 781–784 (2010)

    ADS  CAS  Google Scholar 

  116. Genel, S., Genzel, R., Bouché, N., Naab, T. & Sternberg, A. The halo merger rate in the millennium simulation and implications for observed galaxy merger fractions. Astrophys. J. 701, 2002–2018 (2009)

    ADS  Google Scholar 

  117. Rodriguez-Gomez, V. et al. The merger rate of galaxies in the Illustris simulation: a comparison with observations and semi-empirical models. Mon. Not. R. Astron. Soc. 449, 49–64 (2015)

    ADS  CAS  Google Scholar 

  118. Marshall, H. L., Tananbaum, H., Avni, Y. & Zamorani, G. Analysis of complete quasar samples to obtain parameters of luminosity and evolution functions. Astrophys. J. 269, 35–41 (1983)

    ADS  Google Scholar 

Download references

Acknowledgements

This work is dedicated to the memory of our friend and collaborator Neil Gehrels. We acknowledge the work done by the Swift/BAT team to make this project possible. We thank M. Kishimoto, C.-S. Chang, D. Asmus, M. Stalevski, P. Gandhi and G. Privon for discussions. We thank N. Secrest for providing us with the stellar masses of the Swift/BAT sample. This paper is part of the Swift/BAT AGN Spectroscopic Survey (BASS, http://www.bass-survey.com). This work is sponsored by the Chinese Academy of Sciences (CAS), through a grant to the CAS South America Center for Astronomy (CASSACA) in Santiago, Chile. We acknowledge financial support from FONDECYT 1141218 (C.R., F.E.B.), FONDECYT 1160999 (E.T.), Basal-CATA PFB–06/2007 (C.R., E.T., F.E.B.), the China-CONICYT fund (C.R.), the Swiss National Science Foundation (grant PP00P2 138979 and PP00P2 166159, K.S.), the Swiss National Science Foundation (SNSF) through the Ambizione fellowship grant PZ00P2 154799/1 (M.J.K.), the NASA ADAP award NNH16CT03C (M.J.K.), the Chinese Academy of Science grant no. XDB09030102 (L.C.H.), the National Natural Science Foundation of China grant no. 11473002 (L.C.H.), the Ministry of Science and Technology of China grant no. 2016YFA0400702 (L.C.H.), the ERC Advanced Grant Feedback 340442 (A.C.F.), and the Ministry of Economy, Development, and Tourism’s Millennium Science Initiative through grant IC120009, awarded to The Millennium Institute of Astrophysics, MAS (F.E.B.). Part of this work was carried out while C.R. was Fellow of the Japan Society for the Promotion of Science (JSPS) at Kyoto University. This work was partly supported by the Grant-in-Aid for Scientific Research 17K05384 (Y.U.) from the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT). We acknowledge the usage of the HyperLeda database (http://leda.univ-lyon1.fr).

Author information

Authors and Affiliations

Authors

Contributions

C.R. wrote the manuscript with comments and input from all authors, and performed the analysis. B.T. calculated the bolometric corrections, B.T., M.J.K., K.O. and I.L. analysed the optical spectra and inferred the black hole masses, C.R. carried out the broad-band X-ray spectral analysis and Y.U. calculated the intrinsic column density distribution of AGN for different ranges of the Eddington ratio.

Corresponding author

Correspondence to Claudio Ricci.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Figure 1 Eddington ratio distribution for different classes of AGN.

ac, Histograms of λEdd for unobscured (NH < 1022 cm−2; a), obscured Compton-thin (1022 cm−2 ≤ NH < 1024 cm−2; b) and Compton-thick (NH ≥ 1024 cm−2; c) AGN. The vertical red dashed lines show the median values for the different subsets of sources.

Extended Data Figure 2 Eddington ratio versus X-ray luminosity and black hole mass.

a, b, Scatter plots of λEdd versus the 2–10-keV intrinsic luminosity (L2–10; a) and the black hole mass (MBH; b) for unobscured (NH ≤ 1022 cm−2; black open diamonds), obscured (1022 cm−2 ≤ NH < 1024 cm−2; red filled circles) and Compton-thick (NH ≥ 1024 cm−2; blue filled squares) AGN. The black dashed lines represent values for constant mass (a) and luminosity (b).

Extended Data Figure 3 Fraction of obscured sources versus luminosity.

Fraction of obscured Compton-thin sources versus the intrinsic 14–150-keV luminosities for the non-blazar AGN of the Swift/BAT 70-month catalogue. The fraction of obscured sources is normalized in the NH = 1020–1024 cm−2 range. The filled area represents the 16th and 84th quantiles of a binomial distribution20.

Extended Data Figure 4 Fraction of obscured sources versus λEdd for two ranges of luminosity and black hole mass.

a, b, Fraction of obscured Compton-thin sources versus Eddington ratio for two bins of the 14–150-keV intrinsic luminosity (a) and of the black hole mass (b). The dashed vertical lines represent the effective Eddington limit for dusty gas with NH = 1022 cm−2 () and NH = 1023 cm−2 (). The plots are normalized to unity in the interval 20≤ log[NH (cm−2)] < 24, and the shaded areas represent the 16th and 84th quantiles of a binomial distribution20. The same trend found for the whole sample is obtained when looking at different bins of L14–150 and MBH, confirming that the Eddington ratio is the main parameter driving obscuration.

Extended Data Figure 5 Relation between the fraction of obscured AGN and the Eddington ratio assuming different bolometric corrections.

a, b, The bolometric corrections used are dependent on the bolometric luminosity (a; blue111 and red108 lines) and on the Eddington ratio (b; blue112 and red108 lines). The shaded areas represent the 16th and 84th quantiles of a binomial distribution20. The figure shows that our results are mostly independent on the choice of the bolometric correction.

Extended Data Figure 6 Median value of the column density versus Eddington ratio for AGN with 20 ≤ log[NH (cm−2)] ≤ 24.

The plot highlights the sharp transition at log(λEdd) ≈ −1.5 between AGN being typically obscured to unobscured. The filled area shows the median absolute deviation. The dashed vertical lines represent the effective Eddington limit for a dusty gas with NH = 1022 cm−2 () and NH = 1023 cm−2 () for standard dust grain composition of the interstellar medium, showing that radiation pressure regulates the median column density of AGN.

Extended Data Figure 7 Median value of the column density versus Eddington ratio for different luminosity and black hole mass ranges.

a, b, Same as Extended Data Fig. 6 but for two different ranges of the intrinsic 14–150-keV luminosity (a; in erg s−1) and black hole mass (b; in M). The filled areas represent the median absolute deviations. The dashed vertical lines represent the effective Eddington limit for dusty gas with NH = 1022 cm−2 () and NH = 1023 cm−2 () for standard dust grain composition of the interstellar medium.

Extended Data Table 1 Intrinsic fraction of sources with a given column density in different ranges of λEdd

PowerPoint slides

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ricci, C., Trakhtenbrot, B., Koss, M. et al. The close environments of accreting massive black holes are shaped by radiative feedback. Nature 549, 488–491 (2017). https://doi.org/10.1038/nature23906

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature23906

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing