Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Positron annihilation signatures associated with the outburst of the microquasar V404 Cygni

Abstract

Microquasars1,2,3,4 are stellar-mass black holes accreting matter from a companion star5 and ejecting plasma jets at almost the speed of light. They are analogues of quasars that contain supermassive black holes of 106 to 1010 solar masses. Accretion in microquasars varies on much shorter timescales than in quasars and occasionally produces exceptionally bright X-ray flares6. How the flares are produced is unclear, as is the mechanism for launching the relativistic jets and their composition. An emission line near 511 kiloelectronvolts has long been sought in the emission spectrum of microquasars as evidence for the expected electron–positron plasma. Transient high-energy spectral features have been reported in two objects7,8, but their positron interpretation9 remains contentious. Here we report observations of γ-ray emission from the microquasar V404 Cygni during a recent period of strong flaring activity10. The emission spectrum around 511 kiloelectronvolts shows clear signatures of variable positron annihilation, which implies a high rate of positron production. This supports the earlier conjecture that microquasars may be the main sources of the electron–positron plasma responsible for the bright diffuse emission of annihilation γ-rays in the bulge region of our Galaxy11. Additionally, microquasars could be the origin of the observed megaelectronvolt continuum excess in the inner Galaxy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spectral evolution of V404 Cygni.
Figure 2: Model alternatives for epoch 3.
Figure 3: Time history of X-ray continuum and annihilation emission.

Similar content being viewed by others

References

  1. Mirabel, I. F., Rodriguez, L. F., Cordier, B., Paul, J. & Lebrun, F. A double-sided radio jet from the compact Galactic Centre annihilator 1E1740.7–2942. Nature 358, 215–217 (1992)

    Article  ADS  Google Scholar 

  2. Mirabel, I. F. & Rodriguez, L. F. Sources of relativistic jets in the Galaxy. Annu. Rev. Astron. Astrophys. 37, 409–443 (1999)

    Article  ADS  Google Scholar 

  3. Fender, R. P., Belloni, T. M. & Gallo, E. Towards a unified model for black hole X-ray binary jets. Mon. Not. R. Astron. Soc. 355, 1105–1118 (2004)

    Article  CAS  ADS  Google Scholar 

  4. Mirabel, I. F. & Rodriguez, L. F. A superluminal source in the Galaxy. Nature 371, 46–48 (1994)

    Article  ADS  Google Scholar 

  5. Remillard, R. A. & McClintock, J. E. X-ray properties of black-hole binaries. Annu. Rev. Astron. Astrophys. 44, 49–92 (2006)

    Article  ADS  Google Scholar 

  6. Greiner, J., Morgan, E. H. & Remillard, R. A. Rossi X-Ray Timing Explorer observations of GRS 1915+105. Astrophys. J. 473, L107–L110 (1996)

    Article  ADS  Google Scholar 

  7. Bouchet, L. et al. Sigma discovery of variable e+-e annihilation radiation from the near Galactic center variable compact source 1E 1740.7−2942. Astrophys. J. 383, L45–L48 (1991)

    Article  CAS  ADS  Google Scholar 

  8. Goldwurm, A. et al. Sigma/GRANAT soft gamma-ray observations of the X-ray nova in Musca — discovery of positron annihilation emission line. Astrophys. J. 389, L79–L82 (1992)

    Article  CAS  ADS  Google Scholar 

  9. Sunyaev, R. et al. X-ray nova in Musca (GRS 1124–68): hard X-ray source with narrow annihilation line. Astrophys. J. 389, L75–L78 (1992)

    Article  CAS  ADS  Google Scholar 

  10. Kuulkers, E. et al. Renewed activity of V404 Cyg (GS 2023+338). Astron. Telegr . 7647 (2015)

  11. Prantzos, N. et al. The 511 keV emission from positron annihilation in the Galaxy. Rev. Mod. Phys. 83, 1001–1056 (2011)

    Article  CAS  ADS  Google Scholar 

  12. Winkler, C. et al. The INTEGRAL mission. Astron. Astrophys. 411, L1–L6 (2003)

    Article  CAS  ADS  Google Scholar 

  13. Rodriguez, J. et al. Correlated optical, X-ray, and γ-ray flaring activity seen with INTEGRAL during the 2015 outburst of V404 Cygni. Astron. Astrophys. 581, L9–L13 (2015)

    Article  ADS  Google Scholar 

  14. Khargharia, J., Froning, C. S. & Robinson, E. L. Near-infrared spectroscopy of low-mass X-ray binaries: accretion disk contamination and compact object mass determination in V404 Cyg and Cen X-4. Astrophys. J. 716, 1105–1117 (2010)

    Article  CAS  ADS  Google Scholar 

  15. Miller-Jones, J. C. A. et al. The first accurate parallax distance to a black hole. Astrophys. J. 706, L230–L234 (2009)

    Article  ADS  Google Scholar 

  16. Casares, J., Charles, P. A. & Naylor, T. A 6.5-day periodicity in the recurrent nova V404 Cygni implying the presence of a black hole. Nature 355, 614–617 (1992)

    Article  ADS  Google Scholar 

  17. Done, C., Gierlinski, M. & Kubota, A. Modelling the behaviour of accretion flows in X-ray binaries. Astron. Astrophys. Rev. 15, 1–66 (2007)

    Article  ADS  Google Scholar 

  18. Maciolek-Niedzwiecki, A., Zdziarski, A. A. & Coppi, P. S. Electron/positron pair production and annihilation spectral features from compact sources. Mon. Not. R. Astron. Soc. 276, 273–282 (1995)

    CAS  ADS  Google Scholar 

  19. Svensson, R. Non-thermal pair production in compact X-ray sources — first-order Compton cascades in soft radiation fields. Mon. Not. R. Astron. Soc. 227, 403–451 (1987)

    Article  CAS  ADS  Google Scholar 

  20. Beloborodov, A. M. Electron-positron outflows from gamma-ray emitting accretion discs. Mon. Not. R. Astron. Soc. 305, 181–189 (1999)

    Article  CAS  ADS  Google Scholar 

  21. Fabian, A. C. et al. Properties of AGN coronae in the NuSTAR era. Mon. Not. R. Astron. Soc. 451, 4375–4383 (2015)

    Article  CAS  ADS  Google Scholar 

  22. Beloborodov, A. M. Plasma ejection from magnetic flares and the X-ray spectrum of Cygnus X-1. Astrophys. J. 510, L123–L126 (1999)

    Article  CAS  ADS  Google Scholar 

  23. Crannell, C. J., Joyce, G., Ramaty, R. & Werntz, C. Formation of the 0.511 MeV line in solar flares. Astrophys. J. 210, 582–592 (1976)

    Article  CAS  ADS  Google Scholar 

  24. King, A. L., Miller, J. M., Raymond, J., Reynolds, M. T. & Morningstar, W. High-resolution Chandra HETG spectroscopy of V404 Cygni in outburst. Astrophys. J. 813, L37 (2015)

    Article  ADS  Google Scholar 

  25. Natalucci, L. et al. High energy specral evolution of V404 Cygni during the 2015 June outburst as observed by INTEGRAL. Astrophys. J. 813, L21 (2015)

    Article  ADS  Google Scholar 

  26. Gallo, E., Fender, R. P. & Pooley, G. G. A universal radio-X-ray correlation in low/hard state black hole binaries. Mon. Not. R. Astron. Soc. 344, 60–72 (2003)

    Article  ADS  Google Scholar 

  27. Sadowski, A., Ziółkowski, J., Belczyski, K. & Bulik, T. Calculations of the Galactic population of black hole X-ray binaries. AIP Conf. Proc. 1010, 404–406 (2008)

    Article  ADS  Google Scholar 

  28. Grenier, I. A., Black, J. H. & Strong, A. W. The nine lives of cosmic rays in galaxies. Annu. Rev. Astron. Astrophys. 53, 199–246 (2015)

    Article  ADS  Google Scholar 

  29. Strong, A. W. et al. Gamma-ray continuum emission from the inner Galactic region as observed with INTEGRAL/SPI. Astron. Astrophys. 444, 495–503 (2005)

    Article  ADS  Google Scholar 

  30. Vedrenne, G. et al. SPI: the spectrometer aboard INTEGRAL. Astron. Astrophys. 411, L63–L70 (2003)

    Article  CAS  ADS  Google Scholar 

  31. Roques, J.-P. et al. SPI/INTEGRAL in-flight performance. Astron. Astrophys. 411, L91–L100 (2003)

    Article  CAS  ADS  Google Scholar 

  32. Weidenspointner, G. et al. First identification and modelling of SPI background lines. Astron. Astrophys. 411, L113–L116 (2003)

    Article  CAS  ADS  Google Scholar 

  33. Bouchet, L. et al. INTEGRAL SPI all-sky view in soft gamma rays: a study of point-source and Galactic diffuse emission. Astrophys. J. 679, 1315–1326 (2008)

    Article  CAS  ADS  Google Scholar 

  34. Malzac, J. On the nature of X-ray corona of black hole binaries. Int. J. Mod. Phys. Conf. Ser . 08, 73–83 (2012)

    Article  CAS  ADS  Google Scholar 

  35. Svensson, R., Larrson, S. & Poutanen, J. A simple formula for the thermal pair annihilation line emissivity. Astron. Astrophys. 120c (Suppl.), 587–590 (1996)

    ADS  Google Scholar 

  36. Roques, J.-P. et al. First INTEGRAL observations of V404 Cygni during the 2015 outburst: spectral behavior in the 20–650 keV energy range. Astrophys. J. 813, L22 (2015)

    Article  ADS  Google Scholar 

  37. Ore, A. & Powell, J. L. Three-photon annihilation of an electron-positron pair. Phys. Rev. 75, 1696–1699 (1949)

    Article  CAS  ADS  Google Scholar 

  38. Sharma, S. C. & McNutt, J. D. Positron annihilation in gaseous nitrogen. Phys. Rev. A 18, 1426–1434 (1978)

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

The INTEGRAL/SPI project has been completed under the responsibility and leadership of CNES; we are grateful to ASI, CEA, CNES, DLR, ESA, INTA, NASA and OSTC for support of this ESA space science mission. R.D. and J.G. are also supported by the Munich excellence cluster ‘Origin and evolution of the Universe’. M.G.H.K. is supported by the Deutsche Forschungsgemeinschaft, project number PR 569/10-1, as part of DFG Priority Program 1573. J.R. acknowledges funding support from the French Research National Agency, CHAOS project ANR-12-BS05-0009, and from the UnivEarthS Labex program of Sorbonne Paris Cité.

Author information

Authors and Affiliations

Authors

Contributions

T.S. was responsible for the spectroscopy analysis, data modelling, and paper writing, and R.D. led the analysis and paper writing. J.G., M.G.H.K. and A.M.B. were responsible for interpretational aspects and crucial inputs to the paper. J.G. was responsible for analysis of the Fermi data, M.C.B and J.R. contributed in microquasar physics, F.G. in data analysis, A.W.S. in γ-ray continuum and cosmic-ray physics, and X.Z. was responsible for data preparation and reduction, and the instrument response.

Corresponding author

Correspondence to Thomas Siegert.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Figure 1 Spectral shape of annihilation emission from a relativistic thermal pair plasma.

Each curve shows intensity per unit energy and is labelled with θ (= kT/mec2), the dimensionless temperature. The model is used to quantify the width of the observed annihilation line (see Methods section ‘Spectral fitting’). The grey shaded area is the integrated flux over all energies for this thermal plasma annihilation model (TPA).

Extended Data Table 1 Spectral fit parameters for the flaring epochs of V404 Cygni
Extended Data Table 2 Goodness-of-fit for spectra
Extended Data Table 3 Spectral fit result details for the alternative model M2
Extended Data Table 4 Significance estimates of additional components
Extended Data Table 5 Spectral fit parameters for the third flaring epoch

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siegert, T., Diehl, R., Greiner, J. et al. Positron annihilation signatures associated with the outburst of the microquasar V404 Cygni. Nature 531, 341–343 (2016). https://doi.org/10.1038/nature16978

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature16978

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing