Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

New genomic and fossil data illuminate the origin of enamel

Abstract

Enamel, the hardest vertebrate tissue, covers the teeth of almost all sarcopterygians (lobe-finned bony fishes and tetrapods) as well as the scales and dermal bones of many fossil lobe-fins1,2,3,4,5. Enamel deposition requires an organic matrix containing the unique enamel matrix proteins (EMPs) amelogenin (AMEL), enamelin (ENAM) and ameloblastin (AMBN)6. Chondrichthyans (cartilaginous fishes) lack both enamel and EMP genes7,8. Many fossil and a few living non-teleost actinopterygians (ray-finned bony fishes) such as the gar, Lepisosteus, have scales and dermal bones covered with a proposed enamel homologue called ganoine1,9. However, no gene or transcript data for EMPs have been described from actinopterygians10,11. Here we show that Psarolepis romeri, a bony fish from the the Early Devonian period, combines enamel-covered dermal odontodes on scales and skull bones with teeth of naked dentine, and that Lepisosteus oculatus (the spotted gar) has enam and ambn genes that are expressed in the skin, probably associated with ganoine formation. The genetic evidence strengthens the hypothesis that ganoine is homologous with enamel. The fossil evidence, further supported by the Silurian bony fish Andreolepis, which has enamel-covered scales but teeth and odontodes on its dermal bones made of naked dentine12,13,14,15,16, indicates that this tissue originated on the dermal skeleton, probably on the scales. It subsequently underwent heterotopic expansion across two highly conserved patterning boundaries (scales/head–shoulder and dermal/oral) within the odontode skeleton.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phylogeny of odontode surface tissues.
Figure 2: P/Q-rich SCPP gene cluster.
Figure 3: Sagittal section (IVPP V17756.3) of the cranial roof and transverse section (IVPP V19360.1) of the lower jaw of P. romeri.
Figure 4: Scenarios about the early evolution of enamel.

Similar content being viewed by others

References

  1. Sire, J.-Y., Donoghue, P. C. J. & Vickaryous, M. K. Origin and evolution of the integumentary skeleton in non-tetrapod vertebrates. J. Anat. 214, 409–440 (2009)

    Article  Google Scholar 

  2. Chang, M.-M. & Smith, M. M. Is Youngolepis a porolepiform? J. Vertebr. Paleontol. 12, 294–312 (1992)

    Article  Google Scholar 

  3. Smith, M. M. Enamel in the oral teeth of Latimeria chalumnae (Pisces: Actinistia): a scanning electron microscope study. J. Zool. 185, 355–369 (1978)

    Article  Google Scholar 

  4. Satchell, P. G., Shuler, C. F. & Diekwisch, T. G. H. True enamel covering in teeth of the Australian lungfish Neoceratodus forsteri. Cell Tissue Res. 299, 27–37 (2000)

    Article  CAS  Google Scholar 

  5. Smith, M. M. in Structure, Function and Evolution of Teeth (eds Smith, P. & Tchernov, E. ) 73–101 (Freund, 1992)

    Google Scholar 

  6. Sire, J.-Y., Davit-Béal, T., Delgado, S. & Gu, X. The origin and evolution of enamel mineralization genes. Cells Tissues Organs 186, 25–48 (2007)

    Article  Google Scholar 

  7. Venkatesh, B. et al. Elephant shark genome provides unique insights into gnathostome evolution. Nature 505, 174–179 (2014)

    Article  ADS  CAS  Google Scholar 

  8. Grady, J. E. Tooth development in sharks. Arch. Oral Biol. 15, 613–619 (1970)

    Article  CAS  Google Scholar 

  9. Sasagawa, I., Ishiyama, M., Yokosuka, H. & Mikami, M. Teeth and ganoid scales in Polypterus and Lepisosteus, the basic actinopterygian fish: an approach to understand the origin of the tooth enamel. J. Oral Biosciences 55, 76–84 (2013)

    Article  CAS  Google Scholar 

  10. Kawasaki, K. & Amemiya, C. T. SCPP genes in the coelacanth: tissue mineralization genes shared by sarcopterygians. J. Exp. Zool. B Mol. Dev. Evol. 322, 390–402 (2014)

    Article  CAS  Google Scholar 

  11. Kawasaki, K. The SCPP gene family and the complexity of hard tissues in vertebrates. Cells Tissues Organs 194, 108–112 (2011)

    Article  Google Scholar 

  12. Botella, H., Blom, H., Dorka, M., Ahlberg, P. E. & Janvier, P. Jaws and teeth of the earliest bony fishes. Nature 448, 583–586 (2007)

    Article  ADS  CAS  Google Scholar 

  13. Zhu, M. et al. The oldest articulated osteichthyan reveals mosaic gnathostome characters. Nature 458, 469–474 (2009)

    Article  ADS  CAS  Google Scholar 

  14. Gross, W. Fragliche Actinopterygier-Schuppen aus dem Silur Gotlands. Lethaia 1, 184–218 (1968)

    Article  Google Scholar 

  15. Qu, Q., Sanchez, S., Blom, H., Tafforeau, P. & Ahlberg, P. E. Scales and tooth whorls of ancient fishes challenge distinction between external and oral ‘teeth’. PLoS One 8, e71890 (2013)

    Article  ADS  CAS  Google Scholar 

  16. Cunningham, J. A., Rücklin, M., Blom, H., Botella, H. & Donoghue, P. C. J. Testing models of dental development in the earliest bony vertebrates, Andreolepis and Lophosteus. Biol. Lett. 8, 833–837 (2012)

    Article  Google Scholar 

  17. Moffatt, P., Wazen, R. M., Dos Santos Neves, J. & Nanci, A. Characterisation of secretory calcium-binding phosphoprotein-proline-glutamine-rich 1: a novel basal lamina component expressed at cell-tooth interfaces. Cell Tissue Res. 358, 843–855 (2014)

    Article  CAS  Google Scholar 

  18. Nakayama, Y., Holcroft, J. & Ganss, B. Enamel hypomineralization and structural defects in amelotin-deficient mice. J. Dent. Res. 94, 697–705 (2015)

    Article  CAS  Google Scholar 

  19. Fraser, G. J. & Smith, M. M. Evolution of developmental pattern for vertebrate dentitions: an oro-pharyngeal specific mechanism. J. Exp. Zool. B Mol. Dev. Evol. 316B, 99–112 (2011)

    Article  Google Scholar 

  20. Sire, J.-Y., Géraudie, J., Meunier, F. J. & Zylberberg, L. On the origin of ganoine: histological and ultrastructural data on the experimental regeneration of the scales of Calamoichthys calabaricus (Osteichthyes, Brachyopterygii, Polypteridae). Am. J. Anat. 180, 391–402 (1987)

    Article  CAS  Google Scholar 

  21. Thomson, K. S. & McCune, A. Development of the scales in Lepisosteus as a model for scale formation in fossil fishes. Zool. J. Linn. Soc. 82, 73–86 (1984)

    Article  Google Scholar 

  22. Poole, D. F. G. in Structural and Chemical Organization of Teeth Vol. 1 (ed. Miles, A. E. W. ) 111–149 (Academic, 1967)

    Google Scholar 

  23. Braasch, I. et al. A new model army: emerging fish models to study the genomics of vertebrate Evo-Devo. J. Exp. Zool. B Mol. Dev. Evol. 324, 316–341 (2015)

    Article  Google Scholar 

  24. Gross, W. Lophosteus superbus Pander: Zähne, Zahnknochen und besondere Schuppenformen. Lethaia 4, 131–152 (1971)

    Article  Google Scholar 

  25. Richter, M. & Smith, M. M. A microstructural study of the ganoine tissue of selected lower vertebrates. Zool. J. Linn. Soc. 114, 173–212 (1995)

    Article  Google Scholar 

  26. Zhu, M. et al. A primitive fossil fish sheds light on the origin of bony fishes. Nature 397, 607–610 (1999)

    Article  ADS  CAS  Google Scholar 

  27. Zhu, M. et al. A Silurian placoderm with osteichthyan-like marginal jaw bones. Nature 502, 188–193 (2013)

    Article  ADS  CAS  Google Scholar 

  28. Qu, Q., Zhu, M. & Wang, W. Scales and dermal skeletal histology of an early bony fish Psarolepis romeri and their bearing on the evolution of rhombic scales and hard tissues. PLoS ONE 8, e61485 (2013)

    Article  ADS  CAS  Google Scholar 

  29. Pearson, D. M. & Westoll, T. S. The Devonian actinopterygian Cheirolepis Agassiz. Trans. R. Soc. Edinb. 70, 337–399 (1979)

    Google Scholar 

  30. Jarvik, E. Basic Structure and Evolution of Vertebrates Vol. 1 (Academic, 1980)

    Google Scholar 

  31. Flicek, P. et al. Ensembl 2014. Nucleic Acids Res. 42, D749–D755 (2014)

    Article  CAS  Google Scholar 

  32. Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011)

    Article  Google Scholar 

  33. Kawasaki, K. The SCPP gene repertoire in bony vertebrates and graded differences in mineralized tissues. Dev. Genes Evol. 219, 147–157 (2009)

    Article  CAS  Google Scholar 

  34. Kawasaki, K., Suzuki, T. & Weiss, K. M. Phenogenetic drift in evolution: the changing genetic basis of vertebrate teeth. Proc. Natl Acad. Sci. USA 102, 18063–18068 (2005)

    Article  ADS  CAS  Google Scholar 

  35. Petersen, T. N., Brunak, S., von Heijne, G. & Nielsen, H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nature Methods 8, 785–786 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was inspired in part by initial discussions with K. Kawasaki, whom we gratefully acknowledge. We thank the Broad Institute Genomics Platform and Vertebrate Genome Biology group, Spotted Gar Genome Consortium and K. Lindblad-Toh for making the data for L. oculatus available. We thank W. Zhang and S. Zhang for technical help with thin sections and SEM. The work was supported by the Knut and Alice Wallenberg Foundation through a Wallenberg Scholarship awarded to P.E.A., and by Vetenskapsrådet (Swedish Research Council) through a Young Researcher Grant awarded to T.H. M.Z. was funded by the National Basic Research Programme of China (2012CB821902).

Author information

Authors and Affiliations

Authors

Contributions

Q.Q. and T.H. initiated the project. Q.Q. collected and analysed the palaeontological data, and produced Fig. 3 and Extended Data Figs 2, 3, 4, 5. T.H. collected and analysed the genomic data, and produced Figs 2, 4a, Extended Data Fig. 1, Extended Data Table 1 and Supplementary Information. M.Z. provided material of Psarolepis. P.E.A. led the writing process, and produced Figs 1 and 4b. All authors participated in the writing process.

Corresponding author

Correspondence to Per Erik Ahlberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Figure 1 Exon organization of P/Q-rich SCPP genes in human, anole lizard, coelacanth, spotted gar and zebrafish.

Each box represents a single exon. 5′ and 3′ untranslated regions are marked in white and protein-coding regions are marked in black. Location of the signal peptide (SP) is marked in yellow (EMPs), orange (maturation-stage proteins) and grey (zebrafish SCPP6). P/Q-labelled exons contain at least 25% of Pro and Gln residues. Exons with aromatic residues Phe, Tyr and Trp are marked with Y/F. Conserved amino acid motifs are indicated on the top or inside the exon boxes. Nearly identical exons are marked by asterisk or circle.

Extended Data Figure 2 The skull roof (IVPP V17756) of P. romeri used for making thin sections in this study.

Dorsal view (left) showing the relative positions of the thin sections and anterior view (right) showing the position of premaxilla. ‘a–h’ represent positions of the eight sections in Extended Data Fig. 3. Scale bar, 5 mm.

Extended Data Figure 3 The outlines of all the thin sections made from IVPP V17756.

Scale bar, 300 µm.

Extended Data Figure 4 Other teeth on the left premaxilla showing the absence of enamel.

a, From Extended Data Fig. 2a (IVPP V17756.1). b, Detail of a under transmission light (top) and polarized light (bottom). c, From Extended Data Fig. 2b (IVPP V17756.4), under transmission light (top) and polarized light (bottom). d, From Extended Data Fig. 2d (IVPP V17756.4). e, Detail of d under transmission light (top) and polarized light (bottom). Scale bar, 100 µm.

Extended Data Figure 5 The lower jaw (IVPP V19360) of P. romeri used for thin sections.

Scale bar, 5 mm.

Extended Data Table 1 P/Q-rich SCPP genes and SPARCL genes identified in the spotted gar and coelacanth genomes

Supplementary information

Supplementary Information

This file contains Supplementary Text and additional references. (PDF 353 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, Q., Haitina, T., Zhu, M. et al. New genomic and fossil data illuminate the origin of enamel. Nature 526, 108–111 (2015). https://doi.org/10.1038/nature15259

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature15259

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing