Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Growing the gas-giant planets by the gradual accumulation of pebbles

Abstract

It is widely held that the first step in forming gas-giant planets, such as Jupiter and Saturn, was the production of solid ‘cores’ each with a mass roughly ten times that of the Earth1,2. Getting the cores to form before the solar nebula dissipates (in about one to ten million years; ref. 3) has been a major challenge for planet formation models4,5. Recently models have emerged in which ‘pebbles’ (centimetre-to-metre-sized objects) are first concentrated by aerodynamic drag and then gravitationally collapse to form objects 100 to 1,000 kilometres in size6,7,8,9. These ‘planetesimals’ can then efficiently accrete left-over pebbles10 and directly form the cores of giant planets11,12. This model is known as ‘pebble accretion’; theoretically, it can produce cores of ten Earth masses in only a few thousand years11,13. Unfortunately, full simulations of this process13 show that, rather than creating a few such cores, it produces a population of hundreds of Earth-mass objects that are inconsistent with the structure of the Solar System. Here we report that this difficulty can be overcome if pebbles form slowly enough to allow the planetesimals to gravitationally interact with one another. In this situation, the largest planetesimals have time to scatter their smaller siblings out of the disk of pebbles, thereby stifling their growth. Our models show that, for a large and physically reasonable region of parameter space, this typically leads to the formation of one to four gas giants between 5 and 15 astronomical units from the Sun, in agreement with the observed structure of the Solar System.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The cumulative mass distribution of planetesimals and embryos.
Figure 2: The vertical distribution of pebbles and embryos.
Figure 3: Embryo growth rate as a function of mass.

Similar content being viewed by others

References

  1. Mizuno, H., Nakazawa, K. & Hayashi, C. Instability of a gaseous envelope surrounding a planetary core and formation of giant planets. Prog. Theor. Phys. 60, 699–710 (1978)

    Article  ADS  CAS  Google Scholar 

  2. Pollack, J. B. et al. Formation of the giant planets by concurrent accretion of solids and gas. Icarus 124, 62–85 (1996)

    Article  ADS  Google Scholar 

  3. Haisch, K. E., Lada, E. A. & Lada, C. J. Disk frequencies and lifetimes in young clusters. Astrophys. J. 553, L153–L156 (2001)

    Article  ADS  CAS  Google Scholar 

  4. Goldreich, P., Lithwick, Y. & Sari, R. Final stages of planet formation. Astrophys. J. 614, 497–507 (2004)

    Article  ADS  Google Scholar 

  5. Levison, H. F., Thommes, E. & Duncan, M. J. Modeling the formation of giant planet cores. I. Evaluating key processes. Astron. J. 139, 1297–1314 (2010)

    Article  ADS  Google Scholar 

  6. Cuzzi, J. N., Hogan, R. C., Paque, J. M. & Dobrovolskis, A. R. Size-selective concentration of chondrules and other small particles in protoplanetary nebula turbulence. Astrophys. J. 546, 496–508 (2001)

    Article  ADS  Google Scholar 

  7. Youdin, A. N. & Goodman, J. Streaming instabilities in protoplanetary disks. Astrophys. J. 620, 459–469 (2005)

    Article  ADS  Google Scholar 

  8. Johansen, A. et al. Rapid planetesimal formation in turbulent circumstellar disks. Nature 448, 1022–1025 (2007)

    Article  ADS  CAS  Google Scholar 

  9. Youdin, A. N. On the formation of planetesimals via secular gravitational instabilities with turbulent stirring. Astrophys. J. 731, 99 (2011)

    Article  ADS  Google Scholar 

  10. Ormel, C. W. & Klahr, H. H. The effect of gas drag on the growth of protoplanets. Analytical expressions for the accretion of small bodies in laminar disks. Astron. Astrophys. 520, A43 (2010)

    Article  ADS  Google Scholar 

  11. Lambrechts, M. & Johansen, A. Rapid growth of gas-giant cores by pebble accretion. Astron. Astrophys. 544, A32 (2012)

    Article  ADS  Google Scholar 

  12. Lambrechts, M. & Johansen, A. Forming the cores of giant planets from the radial pebble flux in protoplanetary discs. Astron. Astrophys. 572, A107 (2014)

    Article  ADS  Google Scholar 

  13. Kretke, K. A. & Levison, H. F. Challenges in forming the Solar System’s giant planet cores via pebble accretion. Astron. J. 148, 109 (2014)

    Article  ADS  Google Scholar 

  14. Ricci, L. et al. Dust properties of protoplanetary disks in the Taurus-Auriga star forming region from millimeter wavelengths. Astron. Astrophys. 512, A15 (2010)

    Article  Google Scholar 

  15. Birnstiel, T., Klahr, H. & Ercolano, B. A simple model for the evolution of the dust population in protoplanetary disks. Astron. Astrophys. 539, A148 (2012)

    Article  ADS  Google Scholar 

  16. Stewart, G. R. & Wetherill, G. W. Evolution of planetesimal velocities. Icarus 74, 542–553 (1988)

    Article  ADS  Google Scholar 

  17. Ida, S. Stirring and dynamical friction rates of planetesimals in the solar gravitational field. Icarus 88, 129–145 (1990)

    Article  ADS  Google Scholar 

  18. Ward, W. R. Protoplanet migration by nebula tides. Icarus 126, 261–281 (1997)

    Article  ADS  CAS  Google Scholar 

  19. Fernández, J. A. & Ip, W.-H. Some dynamical aspects of the accretion of Uranus and Neptune — the exchange of orbital angular momentum with planetesimals. Icarus 58, 109–120 (1984)

    Article  ADS  Google Scholar 

  20. Malhotra, R. The origin of Pluto’s orbit: implications for the Solar System beyond Neptune. Astron. J. 110, 420–429 (1995)

    Article  ADS  Google Scholar 

  21. Tsiganis, K., Gomes, R., Morbidelli, A. & Levison, H. F. Origin of the orbital architecture of the giant planets of the Solar System. Nature 435, 459–461 (2005)

    Article  ADS  CAS  Google Scholar 

  22. Levison, H. F., Duncan, M. J. & Thommes, E. A Lagrangian integrator for planetary accretion and dynamics (LIPAD). Astron. J. 144, 119–138 (2012)

    Article  ADS  Google Scholar 

  23. Duncan, M. J., Levison, H. F. & Lee, M. H. A multiple time step symplectic algorithm for integrating close encounters. Astron. J. 116, 2067–2077 (1998)

    Article  ADS  Google Scholar 

  24. Benz, W. & Asphaug, E. Catastrophic disruptions revisited. Icarus 142, 5–20 (1999)

    Article  ADS  Google Scholar 

  25. Papaloizou, J. C. B. & Larwood, J. D. On the orbital evolution and growth of proto-planets embedded in a gaseous disc. Astronomy 315, 823–833 (2000)

    Google Scholar 

  26. Adachi, I., Hayashi, C. & Nakazawa, K. The gas drag effect on the elliptical motion of a solid body in the primordial solar nebula. Prog. Theor. Phys. 56, 1756–1771 (1976)

    Article  ADS  Google Scholar 

  27. Rafikov, R. R. Atmospheres of protoplanetary cores: critical mass for nucleated instability. Astrophys. J. 648, 666–682 (2006)

    Article  ADS  Google Scholar 

  28. Ida, S. & Lin, D. N. C. Toward a deterministic model of planetary formation. IV. Effects of type I migration. Astrophys. J. 673, 487–501 (2008)

    Article  ADS  Google Scholar 

  29. Dobbs-Dixon, I., Li, S. L. & Lin, D. N. C. Tidal barrier and the asymptotic mass of proto-gas giant planets. Astrophys. J. 660, 791–806 (2007)

    Article  ADS  Google Scholar 

  30. Lambrechts, M., Johansen, A. & Morbidelli, A. Separating gas-giant and ice-giant planets by halting pebble accretion. Astron. Astrophys. 572, A35 (2014)

    Article  ADS  Google Scholar 

  31. Chambers, J. E. Giant planet formation with pebble accretion. Icarus 233, 83–100 (2014)

    Article  ADS  Google Scholar 

  32. Nakagawa, Y., Sekiya, M. & Hayashi, C. Settling and growth of dust particles in a laminar phase of a low-mass solar nebula. Icarus 67, 375–390 (1986)

    Article  ADS  Google Scholar 

  33. Andrews, S. M., Wilner, D. J., Hughes, A. M., Qi, C. & Dullemond, C. P. Protoplanetary disk structures in Ophiuchus. II. Extension to fainter sources. Astrophys. J. 723, 1241–1254 (2010)

    Article  ADS  CAS  Google Scholar 

  34. Hayashi, C. Structure of the solar nebula, growth and decay of magnetic fields and effects of magnetic and turbulent viscosities on the nebula. Prog. Theor. Phys. 70 (Supplement), 35–53 (1981)

    Article  Google Scholar 

  35. Hernández, J. et al. Spitzer observations of the λ Orionis cluster. I. The frequency of young debris disks at 5 Myr. Astrophys. J. 707, 705–715 (2009)

    Article  ADS  Google Scholar 

  36. Chiang, E. I. & Goldreich, P. Spectral energy distributions of T Tauri stars with passive circumstellar disks. Astrophys. J. 490, 368–376 (1997)

    Article  ADS  Google Scholar 

  37. Morbidelli, A., Bottke, W. F., Nesvorný, D. & Levison, H. F. Asteroids were born big. Icarus 204, 558–573 (2009)

    Article  ADS  Google Scholar 

  38. Lodders, K. Solar System abundances and condensation temperatures of the elements. Astrophys. J. 591, 1220–1247 (2003)

    Article  ADS  CAS  Google Scholar 

  39. Shakura, N. I. & Sunyaev, R. A. Black holes in binary systems. Observational appearance. Astron. Astrophys. 24, 337–355 (1973)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by an NSF Astronomy and Astrophysics Research Grant (principal investigator H.F.L.). We thank A. Johansen, M. Lambrechts, A. Morbidelli, D. Nesvorny and C. Ormel for discussions.

Author information

Authors and Affiliations

Authors

Contributions

H.F.L. and K.A.K. jointly conceived of the paper and carried out the bulk of the numerical and semi-analytic calculations. M.J.D. developed a semi-analytic model of viscous stirring and growth rates in a population distribution. All authors contributed to the discussion of the results and to the crafting of the manuscript.

Corresponding author

Correspondence to Harold F. Levison.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Table 1 Our completed simulations.
Extended Data Table 2 More simulations.

Supplementary information

The cumulative mass distribution of planetesimals and embryos

The growth of planetary embryos in our fiducial simulation as illustrated by cumulative mass distributions. The initial distribution is shown in pale blue, while the evolving distribution is show in dark blue and red (for embryos larger than 1 Earth-masses). This is an animated version of Figure 1b in the main text. (MP4 93 kb)

The vertical distribution of pebbles and embryos.

A comparison between the vertical distribution, as represented by tan(i), of pebbles (the time averaged cyan gradient) and embryos (black circles) as a function of time in the fiducial simulation. This is an animated version of Figure 2 in the main text. (MP4 529 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levison, H., Kretke, K. & Duncan, M. Growing the gas-giant planets by the gradual accumulation of pebbles. Nature 524, 322–324 (2015). https://doi.org/10.1038/nature14675

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature14675

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing