Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An extremely young massive clump forming by gravitational collapse in a primordial galaxy

Abstract

When cosmic star formation history reaches a peak (at about redshift z ≈ 2), galaxies vigorously fed by cosmic reservoirs1,2 are dominated by gas3,4 and contain massive star-forming clumps5,6, which are thought to form by violent gravitational instabilities in highly turbulent gas-rich disks7,8. However, a clump formation event has not yet been observed, and it is debated whether clumps can survive energetic feedback from young stars, and afterwards migrate inwards to form galaxy bulges9,10,11,12. Here we report the spatially resolved spectroscopy of a bright off-nuclear emission line region in a galaxy at z = 1.987. Although this region dominates star formation in the galaxy disk, its stellar continuum remains undetected in deep imaging, revealing an extremely young (less than ten million years old) massive clump, forming through the gravitational collapse of more than one billion solar masses of gas. Gas consumption in this young clump is more than tenfold faster than in the host galaxy, displaying high star-formation efficiency during this phase, in agreement with our hydrodynamic simulations. The frequency of older clumps with similar masses13, coupled with our initial estimate of their formation rate (about 2.5 per billion years), supports long lifetimes (about 500 million years), favouring models in which clumps survive feedback and grow the bulges of present-day galaxies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A massive, very young clump in a disk galaxy at z = 1.987.
Figure 2: Constraints on the clump’s age from reddening-corrected, rest-frame, emission-line EWs.
Figure 3: The Schmidt–Kennicutt plane.
Figure 4: Numerical simulations of a high-redshift clumpy galaxy seen face-on.

Similar content being viewed by others

References

  1. Kereš, D. How do galaxies get their gas? Mon. Not. R. Astron. Soc. 363, 2–28 (2005)

    Article  ADS  CAS  Google Scholar 

  2. Dekel, A. et al. Cold streams in early massive hot halos as the main mode of galaxy formation. Nature 457, 451–454 (2009)

    Article  CAS  ADS  PubMed  Google Scholar 

  3. Daddi, E. et al. Very high gas fractions and extended gas reservoirs in z = 1.5 disk galaxies. Astrophys. J. 713, 686–707 (2010)

    Article  CAS  ADS  Google Scholar 

  4. Tacconi, L. J. et al. High molecular gas fractions in normal massive star forming galaxies in the young Universe. Nature 463, 781–784 (2010)

    Article  CAS  ADS  PubMed  Google Scholar 

  5. Genzel, R. et al. The rapid formation of a large rotating disk galaxy three billion years after the Big Bang. Nature 442, 786–789 (2006)

    Article  CAS  ADS  Google Scholar 

  6. Elmegreen, B. G. et al. Bulge and clump evolution in Hubble Ultra Deep Field clump clusters, chains and spiral galaxies. Astrophys. J. 692, 12–31 (2009)

    Article  ADS  Google Scholar 

  7. Elmegreen, D. M., Elmegreen, B. G. & Hirst, A. C. Discovery of face-on counterparts of chain galaxies in the Tadpole Advanced Camera for Surveys field. Astrophys. J. 604, 21–23 (2004)

    Article  ADS  Google Scholar 

  8. Bournaud, F., Elmegreen, B. G. & Elmegreen, D. M. Rapid formation of exponential disks and bulges at high redshift from the dynamical evolution of clump-cluster and chain galaxies. Astrophys. J. 670, 237–248 (2007)

    Article  CAS  ADS  Google Scholar 

  9. Bournaud, F. et al. The long lives of giant clumps and the birth of outflows in gas-rich galaxies at high-redshift. Astrophys. J. 780, 57–75 (2014)

    Article  ADS  CAS  Google Scholar 

  10. Genel, S. et al. Short-lived star-forming giant clumps in cosmological simulations of z 2 disks. Astrophys. J. 745, 11–21 (2012)

    Article  ADS  Google Scholar 

  11. Wuyts, S. et al. A CANDELS-3D-HST synergy: resolved star formation patterns at 0.7 < z < 1.5. Astrophys. J. 779, 135–151 (2013)

    Article  ADS  CAS  Google Scholar 

  12. Dekel, A. et al. Formation of massive galaxies at high redshift: cold streams, clumpy disks, and compact spheroids. Astrophys. J. 703, 785–801 (2009)

    Article  ADS  Google Scholar 

  13. Förster-Schreiber, N. et al. Constraints on the assembly and dynamics of galaxies. II. Properties of kiloparsec-scale clumps in rest-frame optical emission of z 2 star-forming galaxies. Astrophys. J. 739, 45–69 (2011)

    Article  ADS  CAS  Google Scholar 

  14. Wuyts, S. et al. Smooth(er) stellar mass maps in CANDELS: constraints on the longevity of clumps in high-redshift star-forming galaxies. Astrophys. J. 753, 114–139 (2012)

    Article  ADS  Google Scholar 

  15. Guo, Y. et al. Multi-wavelength view of kiloparsec-scale clumps in star-forming galaxies at z 2. Astrophys. J. 757, 120–142 (2012)

    Article  ADS  Google Scholar 

  16. Elmegreen, B. et al. Massive clumps in local galaxies: comparison with high-redshift clumps. Astrophys. J. 774, 86–100 (2013)

    Article  CAS  ADS  Google Scholar 

  17. Genzel, R. et al. The SINS survey of z2 galaxy kinematics: properties of the giant star-forming clumps. Astrophys. J. 733, 101–131 (2011)

    Article  ADS  CAS  Google Scholar 

  18. Newman, S. et al. The SINS/zC-SINF survey of z 2 galaxy kinematics: outflow properties. Astrophys. J. 761, 43–50 (2012)

    Article  ADS  CAS  Google Scholar 

  19. Gobat, R. et al. WFC3 GRISM comfirmation of the distant cluster CL J1449 + 0856 at 〈z〉 = 2.00: quiescent and star-forming galaxy populations. Astrophys. J. 776, 9–21 (2013)

    Article  ADS  CAS  Google Scholar 

  20. Mandelker, N. et al. The population of giant clumps in simulated high-z galaxies: in situ and ex situ migration and survival. Mon. Not. R. Astron. Soc. 443, 3675–3702 (2014)

    Article  ADS  Google Scholar 

  21. Förster-Schreiber, N. et al. The SINS survey: Sinfoni integral field spectroscopy of z 2 star-forming galaxies. Astrophys. J. 706, 1364–1428 (2009)

    Article  ADS  CAS  Google Scholar 

  22. Contini, T. et al. MASSIV: Mass Assembly Survey with Sinfoni in VVDS. Astron. Astrophys. 593, 91–106 (2012)

    Article  CAS  Google Scholar 

  23. Rodighiero, G. et al. The lesser role of starbursts in star formation at z = 2. Astrophys. J. 739, 40–45 (2011)

    Article  ADS  Google Scholar 

  24. Lada, C. J., Lombardi, M. & Alves, J. F. On the star formation rates in molecular clouds. Astrophys. J. 724, 687–693 (2010)

    Article  CAS  ADS  Google Scholar 

  25. Daddi, E. et al. Different star formation laws for disks versus starbursts at low and high redshifts. Astrophys. J. 714, 118–122 (2010)

    Article  ADS  CAS  Google Scholar 

  26. Genzel, R. et al. A study of the gas-star formation relation over cosmic time. Mon. Not. R. Astron. Soc. 407, 2091–2108 (2010)

    Article  CAS  ADS  Google Scholar 

  27. Krumholz, M. R., Dekel, A. & McKee, C. F. A. Universal, local star formation law in galactic clouds, nearby galaxies, high-redshift disks, and starbursts. Astrophys. J. 645, 69–84 (2012)

    Article  ADS  Google Scholar 

  28. Hopkins, P. F. et al. Stellar feedback and bulge formation in clumpy discs. Mon. Not. R. Astron. Soc. 427, 968–978 (2012)

    Article  ADS  Google Scholar 

  29. Sargent, M. T. et al. Regularity underlying complexity: a redshift-independent description of the continuous variation of galaxy-scale molecular gas properties in the mass-star formation rate plane. Astrophys. J. 793, 19–55 (2014)

    Article  ADS  Google Scholar 

  30. Shapiro, K. L., Genzel, R. & Förster Schreiber, N. M. Star-forming galaxies at z 2 and the formation of the metal-rich globular cluster population. Mon. Not. R. Astron. Soc. 403, 36–40 (2010)

    Article  ADS  Google Scholar 

  31. Kümmel, M. et al. The slitless spectroscopy data extraction software. Publ. Astron. Soc. Pacif. 121, 59–72 (2009)

    Article  ADS  Google Scholar 

  32. van Dokkum, P. et al. Cosmic-ray rejection by Laplacian edge detection. Publ. Astron. Soc. Pacif. 113, 1420–1427 (2001)

    Article  ADS  Google Scholar 

  33. Bertin, E. & Arnouts, S. SExtractor: software of source extraction. Astron. Astrophys. 117 (Suppl.). 393–404 (1996)

    ADS  Google Scholar 

  34. Fruchter, A. S. & Hook, R. N. Drizzle: a method for the linear reconstruction of undersampled images. Publ. Astron. Soc. Pacif. 114, 144–152 (2002)

    Article  ADS  Google Scholar 

  35. Valentino, F. et al. Metal deficiency in cluster star-forming galaxies at z = 2. Astrophys. J. 801, 132–150 (2015)

    Article  ADS  CAS  Google Scholar 

  36. Peng, C. Y. et al. Detailed decomposition of galaxy images. II. Beyond axisymmetric models. Astron. J. 139, 2097–2129 (2010)

    Article  ADS  Google Scholar 

  37. Sérsic, J. L. Influence of the atmospheric and instrumental dispersion on the brightness distribution in a galaxy. Bol. Asoc. Argentina Astron. 6, 41–43 (1963)

    ADS  Google Scholar 

  38. Cappellari, M. Efficient multi-Gaussian expansion of galaxies. Mon. Not. R. Astron. Soc. 333, 400–410 (2002)

    Article  ADS  Google Scholar 

  39. Conselice, C. J. The relationship between stellar light distributions of galaxies and their formation histories. Astrophys. J. 147 (Supp.). 1–28 (2003)

    Article  ADS  Google Scholar 

  40. Lotz, J. M. et al. A new non-parametric approach to galaxy morphological classification. Astron. J. 128, 163–182 (2004)

    Article  ADS  Google Scholar 

  41. Cibinel, A. et al. A physical approach to the identification of high-z mergers: morphological classification in the stellar mass domain. Astrophys. J. (in the press); preprint at http://arxiv.org/abs/1503.06220

  42. Perret, V. et al. Evolution of the mass, size, and star formation rate in high redshift merging galaxies. Astron. Astrophys. 562, 1–20 (2014)

    Article  Google Scholar 

  43. Leitherer, C. et al. Starburst99: synthesis models for galaxies with active star formation. Astrophys. J. 123 (Suppl.). 3–40 (1999)

    Article  CAS  Google Scholar 

  44. Strazzullo, V. et al. Galaxy evolution in overdense environments at high redshift: passive early-type galaxes in a cluster at z 2. Astrophys. J. 772, 118–135 (2013)

    Article  ADS  Google Scholar 

  45. Calzetti, D. et al. The dust content and opacity of actively star-forming galaxies. Astrophys. J. 533, 682–695 (2000)

    Article  ADS  Google Scholar 

  46. Kashino, D. et al. The FMOS-COSMOS survey of star-forming galaxies at z 1.6. I. Hα based star formation rates and dust extinction. Astrophys. J. 777, 8–14 (2013)

    Article  ADS  CAS  Google Scholar 

  47. Osterbrock, D. E. et al. Astrophysics of Gaseous Nebulae and Active Galactic Nuclei (University Science Books, 1989)

    Book  Google Scholar 

  48. Kewley, L. et al. [OII] as a star formation rate indicator. Astron. J. 127, 2002–2030 (2004)

    Article  CAS  ADS  Google Scholar 

  49. Elmegreen, D. M. et al. Resolved galaxies in the Hubble Ultra Deep Field: star formation in disks at high redshift. Astrophys. J. 658, 763–777 (2007)

    Article  CAS  ADS  Google Scholar 

  50. Cardelli, J. A., Clayton, G. C. & Mathis, J. S. The relationship between infrared, optical, and ultraviolet extinction. Astrophys. J. 345, 245–256 (1989)

    Article  CAS  ADS  Google Scholar 

  51. Steidel, C. C. et al. Strong nebular line ratios in the spectra of z 2–3 star-forming galaxies: first results from KBSS-MOSFIRE. Astrophys. J. 795, 165–205 (2014)

    Article  ADS  CAS  Google Scholar 

  52. Persic, M. et al. 2-10 keV luminosity of high-mass binaries as a gauge of ongoing star formation rate. Astron. Astrophys. 419, 849–862 (2004)

    Article  CAS  ADS  Google Scholar 

  53. Panessa, F. et al. On the X-ray, optical emission line and black hole mass properties of local Seyfert galaxies. Astron. Astrophys. 455, 173–185 (2006)

    Article  CAS  ADS  Google Scholar 

  54. Baldwin, J. A., Phillips, M. M. & Terlevich, R. Classification parameters for the emission-line spectra of extragalactic objects. Publ. Astron. Soc. Pacif. 93, 5–19 (1981)

    Article  CAS  ADS  Google Scholar 

  55. Stern, J. et al. Type 1 AGNs at low z. III. The optical narrow line ratios. Mon. Not. R. Astron. Soc. 431, 836–857 (2013)

    Article  CAS  ADS  Google Scholar 

  56. Caccianiga, A. et al. The relationship between [OIII]λ5007Å equivalent width and obscuration in active galactic nuclei. Mon. Not. R. Astron. Soc. 415, 1928–1934 (2011)

    Article  CAS  ADS  Google Scholar 

  57. Hong, S. et al. Constraining stellar feedback: shock-ionized gas in nearby starburst galaxies. Astrophys. J. 777, 63–83 (2013)

    Article  ADS  CAS  Google Scholar 

  58. Soto, K. T. & Martin, C. L. Gas excitation in ULIRGs: maps of diagnostic emission-line ratios in space and velocity. Astrophys. J. Suppl. Ser. 203, 3–13 (2012)

    Article  ADS  CAS  Google Scholar 

  59. Binette, L., Dopita, M. A. & Tuohy, I. R. Radiative shock-wave theory. II. High-velocity shocks and thermal instabilities. Astrophys. J. 297, 476–491 (1985)

    Article  CAS  ADS  Google Scholar 

  60. Genzel, R. et al. Evidence for wide-spread active galactic nucleus-driven outflows in the most massive z 1-2 star-forming galaxies. Astrophys. J. 796, 7–31 (2014)

    Article  CAS  ADS  Google Scholar 

  61. Renaud, F. et al. A sub-parsec resolution simulation of the Milky Way: global structure of the interstellar medium and properties of molecular clouds. Mon. Not. R. Astron. Soc. 436, 1836–1851 (2013)

    Article  ADS  Google Scholar 

  62. Förster Schreiber, N. et al. The Sins/zC-Sinf survey of z 2 galaxy kinematics: evidence for powerful active galactic nucleus-driven nuclear outflows in massive star-forming galaxies. Astrophys. J. 787, 38–50 (2014)

    Article  ADS  CAS  Google Scholar 

  63. Amorín, R. et al. Discovering extremely compact and metal-poor, star-forming dwarf galaxies out to z 0.9 in the VIMOS Ultra-Deep survey. Astron. Astrophys. 568, 8–16 (2014)

    Article  ADS  CAS  Google Scholar 

  64. Maiolino, R. et al. AMAZE. I. The evolution of the mass-metallicity relation at z > 3. Astron. Astrophys. 488, 463–479 (2008)

    Article  ADS  Google Scholar 

  65. Salpeter, E. E. The luminosity function and stellar evolution. Astrophys. J. 121, 161–167 (1955)

    Article  ADS  Google Scholar 

  66. Kroupa, P. & Boily, C. M. On the mass function of star clusters. Mon. Not. R. Astron. Soc. 336, 1188–1194 (2002)

    Article  ADS  Google Scholar 

  67. Scalo, J. M. The stellar initial mass function. Fundam. Cosm. Phys. 11, 1–278 (1986)

    CAS  ADS  Google Scholar 

  68. Kennicutt, R. C. The global Schmidt law in star-forming galaxies. Astrophys. J. 498, 541–552 (1998)

    Article  CAS  ADS  Google Scholar 

  69. Bournaud, F. & Elmegreen, B. Unstable disks at high redshift: evidence for smooth accretion in galaxy formation. Astrophys. J. 694, 158–161 (2009)

    Article  ADS  Google Scholar 

  70. Elmegreen, B. & Burkert, A. Accretion-driven turbulence and the transition to global instability in young galaxy disks. Astrophys. J. 712, 294–302 (2010)

    Article  ADS  Google Scholar 

  71. Zahid, H. J. et al. The universal relation of galactic chemical evolution: the origin of the mass–metallicity relation. Astrophys. J. 791, 130–143 (2014)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Juneau for discussions, and M. Cappellari for sharing his Multi-Gaussian Expansion fit software publicly. The simulations were performed at the Très Grand Centre de Calcul of the CEA (Commissariat à l’Énergie Atomique et aux énergies alternatives) under GENCI (Grand Équipement National de Calcul Intensif) allocation 2014-GEN2192. We acknowledge financial support from Agence Nationale de la Recherche (contract ANR-12-JS05-0008-01) and the European Commission through European Research Council grants StG-257720 and StG-240039.

Author information

Authors and Affiliations

Authors

Contributions

A.Z., E.D., E.L.F. and F.B. conceived the work, led the analysis and interpretation, and wrote the paper. R.G., F.V., V.S., A.C., M.O. and C.V. contributed key aspects of the data reduction and analysis. V.P. and F.R. contributed key aspects of the simulations development and analysis. All the authors commented on the manuscript at all stages.

Corresponding author

Correspondence to A. Zanella.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Figure 1 GALFIT decomposition of the [O iii] emission line map.

a, b, [O iii] map (a) and model of the point source component (b) for the clump. c, No strong residuals or artefacts are left after removal of the point source component. The positions of the nucleus and of the clump are shown as crosses.

Extended Data Figure 2 Image ratios and mass map.

a, b, Ratio of F105W/F606W imaging in spectral flux density (Fν) scale (a), a proxy for the dust reddening of the stellar continuum, and F140W/F105W imaging, sensitive to the M/L ratio (b). The positions of the nucleus and the clump are shown as crosses. The maps show only small variations: the observed Fν ratios for the nucleus and clump positions are respectively 1.34 and 1.16 for F105W/F606W, and respectively 1.39 and 1.25 for F140W/F105W. Galaxy-wide ratios are respectively 1.27 and 1.37 for F105W/F606W and F140W/F105W. c, Mass map in units of M per pixel.

Extended Data Figure 3 Modelling of the galaxy light profile.

F140W direct image and [O iii] emission line map (a, d, g, j), GALFIT models (b, e, h, k) and residuals (c, f, i, l). The first row shows the single Sérsic profile solution, the MGE model is in the second row, and our baseline model (the sum of three Sérsic profiles, in which blue crosses mark the additional components) is in the third row. The red cross indicates the barycentre of the stellar light and the green cross marks the centre of the [O iii] off-nuclear component.

Extended Data Figure 4 The Asymmetry and M20 morphological parameters as determined from the spatial distribution of the galaxy stellar mass.

Pink and light blue triangles represent disks and mergers from MIRAGE numerical simulations42, respectively. The galaxy presented in this work (red filled circle with error bars indicating s.d.) is located in the typical region occupied by disk galaxies41; the vast majority of mergers have higher Asymmetry and/or M20 parameters. The figure shows the same number of mergers and disks even if mergers are expected to be a minority in optical samples.

Extended Data Figure 5 Upper limits to clump continuum flux.

The observed flux upper limits estimated from simulations and GALFIT modelling in the three bands are shown as black filled circles. The black horizontal lines indicate the bandpass width of each filter. Coloured curves represent reddened Starburst99 stellar population synthesis models43 with different ages (from 8 to 20 Myr), normalized to the most stringent upper limit (F105W band). The corresponding upper limits in F140W and F606W, obtained considering a spectrum with an age 10 Myr, are shown as grey filled circles.

Extended Data Figure 6 Emission line diagnostics.

a, BPT diagram54 showing that the emission line ratios of the whole galaxy and of the clump (red and light-blue points with error bars indicating s.d.) are consistent with being powered by star formation. The [N ii] upper limit and Hα emission of the whole galaxy are measured from the Subaru/MOIRCS longslit spectroscopy follow-up, and the [N ii]/Hα upper limit for the clump is computed by assuming the [N ii] of the whole galaxy. b, Determination of the metallicities of the whole galaxy and that of the clump from the [O iii]/[O ii] ratio64.

Extended Data Figure 7 Time evolution of physical quantities based on the clump SFR(t) from our simulations.

a, The peaks of all the curves normalized to 1 to highlight the time delay occurring between the peak of the SFR and of the luminosities L, L1,500 Å and L5,000 Å. b, Peaks normalized to 1 at t = 1 Gyr to stress the relative intensity of the observables at the peak and later phases. The vertical black dotted line indicates the upper limit on the age of the clump (t = 10 Myr). The units of the plotted quantities are: SFR (M yr−1), EW (Å), L, L1,500 Å and L5,000 Å (erg s−1), M/L5,000 Å (M erg−1 s) and SFR/L (M yr−1 erg−1 s).

Extended Data Table 1 Properties of the galaxy and the clump
Extended Data Table 2 HST/WFC3 and Subaru/MOIRCS observations

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zanella, A., Daddi, E., Le Floc’h, E. et al. An extremely young massive clump forming by gravitational collapse in a primordial galaxy. Nature 521, 54–56 (2015). https://doi.org/10.1038/nature14409

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature14409

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing