Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Minimal Residual Disease

Improved flow cytometric detection of minimal residual disease in childhood acute lymphoblastic leukemia

Abstract

Most current treatment protocols for acute lymphoblastic leukemia (ALL) include minimal residual disease (MRD) diagnostics, generally based on PCR analysis of rearranged antigen receptor genes. Although flow cytometry (FCM) can be used for MRD detection as well, discordant FCM and PCR results are obtained in 5–20% of samples. We evaluated whether 6-color FCM, including additional markers and new marker combinations, improved the results. Bone marrow samples were obtained from 363 ALL patients at day 15, 33 and 78 and MRD was analyzed using 6-color (218 patients) or 4-color (145 patients) FCM in parallel to routine PCR-based MRD diagnostics. Compared with 4-color FCM, 6-color FCM significantly improved the concordance with PCR-based MRD data (88% versus 96%); particularly the specificity of the MRD analysis improved. However, PCR remained more sensitive at levels <0.01%. MRD-based risk groups were similar between 6-color FCM and PCR in 68% of patients, most discrepancies being medium risk by PCR and standard risk by FCM. Alternative interpretation of the PCR data, aimed at prevention of false-positive MRD results, changed the risk group to standard risk in half (52%) of these discordant cases. In conclusion, 6-color FCM significantly improves MRD analysis in ALL but remains less sensitive than PCR-based MRD-diagnostics.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Szczepanski T . Why and how to quantify minimal residual disease in acute lymphoblastic leukemia? Leukemia 2007; 21: 622–626.

    Article  CAS  PubMed  Google Scholar 

  2. Flohr T, Schrauder A, Cazzaniga G, Panzer-Grumayer R, van der Velden V, Fischer S et al. Minimal residual disease-directed risk stratification using real-time quantitative PCR analysis of immunoglobulin and T-cell receptor gene rearrangements in the international multicenter trial AIEOP-BFM ALL 2000 for childhood acute lymphoblastic leukemia. Leukemia 2008; 22: 771–782.

    Article  CAS  PubMed  Google Scholar 

  3. Bruggemann M, Schrauder A, Raff T, Pfeifer H, Dworzak M, Ottmann OG et al. Standardized MRD quantification in European ALL trials: proceedings of the Second International Symposium on MRD assessment in Kiel, Germany, 18-20 September 2008. Leukemia 2010; 24: 521–535.

    Article  CAS  PubMed  Google Scholar 

  4. Waanders E, van der Velden VH, van der Schoot CE, van Leeuwen FN, van Reijmersdal SV, de Haas V et al. Integrated use of minimal residual disease classification and IKZF1 alteration status accurately predicts 79% of relapses in pediatric acute lymphoblastic leukemia. Leukemia 2011; 25: 254–258.

    Article  CAS  PubMed  Google Scholar 

  5. Ryan J, Quinn F, Meunier A, Boublikova L, Crampe M, Tewari P et al. Minimal residual disease detection in childhood acute lymphoblastic leukaemia patients at multiple time-points reveals high levels of concordance between molecular and immunophenotypic approaches. Br J Haematol 2009; 144: 107–115.

    Article  PubMed  Google Scholar 

  6. Neale GA, Coustan-Smith E, Pan Q, Chen X, Gruhn B, Stow P et al. Tandem application of flow cytometry and polymerase chain reaction for comprehensive detection of minimal residual disease in childhood acute lymphoblastic leukemia. Leukemia 1999; 13: 1221–1226.

    Article  CAS  PubMed  Google Scholar 

  7. Munoz L, Lopez O, Martino R, Brunet S, Bellido M, Rubiol E et al. Combined use of reverse transcriptase polymerase chain reaction and flow cytometry to study minimal residual disease in Philadelphia positive acute lymphoblastic leukemia. Haematologica 2000; 85: 704–710.

    CAS  PubMed  Google Scholar 

  8. Malec M, Bjorklund E, Soderhall S, Mazur J, Sjogren AM, Pisa P et al. Flow cytometry and allele-specific oligonucleotide PCR are equally effective in detection of minimal residual disease in ALL. Leukemia 2001; 15: 716–727.

    Article  CAS  PubMed  Google Scholar 

  9. Chen JS, Coustan-Smith E, Suzuki T, Neale GA, Mihara K, Pui CH et al. Identification of novel markers for monitoring minimal residual disease in acute lymphoblastic leukemia. Blood 2001; 97: 2115–2120.

    Article  CAS  PubMed  Google Scholar 

  10. Veltroni M, De Zen L, Sanzari MC, Maglia O, Dworzak MN, Ratei R et al. Expression of CD58 in normal, regenerating and leukemic bone marrow B cells: implications for the detection of minimal residual disease in acute lymphocytic leukemia. Haematologica 2003; 88: 1245–1252.

    PubMed  Google Scholar 

  11. Malec M, van der Velden VHJ, Björklund E, Wijkhuijs JM, Söderhäll S, Mazur J et al. Analysis of minimal residual disease in childhood acute lymphoblastic leukemia: comparison between RQ-PCR analysis of Ig/TcR gene rearrangements and multicolor flow cytometric immunophenotyping. Leukemia 2004; 18: 1630–1636.

    Article  CAS  PubMed  Google Scholar 

  12. Neale GA, Coustan-Smith E, Stow P, Pan Q, Chen X, Pui CH et al. Comparative analysis of flow cytometry and polymerase chain reaction for the detection of minimal residual disease in childhood acute lymphoblastic leukemia. Leukemia 2004; 18: 934–938.

    Article  CAS  PubMed  Google Scholar 

  13. Robillard N, Cave H, Mechinaud F, Guidal C, Garnache-Ottou F, Rohrlich PS et al. Four-color flow cytometry bypasses limitations of IG/TCR polymerase chain reaction for minimal residual disease detection in certain subsets of children with acute lymphoblastic leukemia. Haematologica 2005; 90: 1516–1523.

    CAS  PubMed  Google Scholar 

  14. Kerst G, Kreyenberg H, Roth C, Well C, Dietz K, Coustan-Smith E et al. Concurrent detection of minimal residual disease (MRD) in childhood acute lymphoblastic leukaemia by flow cytometry and real-time PCR. Br J Haematol 2005; 128: 774–782.

    Article  CAS  PubMed  Google Scholar 

  15. Coustan-Smith E, Ribeiro RC, Stow P, Zhou Y, Pui CH, Rivera GK et al. A simplified flow cytometric assay identifies children with acute lymphoblastic leukemia who have a superior clinical outcome. Blood 2006; 108: 97–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Thorn I, Forestier E, Botling J, Thuresson B, Wasslavik C, Bjorklund E et al. Minimal residual disease assessment in childhood acute lymphoblastic leukaemia: a Swedish multi-centre study comparing real-time polymerase chain reaction and multicolour flow cytometry. Br J Haematol 2011; 152: 743–753.

    Article  PubMed  Google Scholar 

  17. Bene MC, Garand R, Beldford K, Cavé H, Fossat C, Arnoux I et al. Flow cytometry and Ig/TCR quantitative PCR for minimal residual disease quantification in acute lymphoblastic leukemia: a French multicenter prospective study. Leukemia 2012; accepted for publication.

  18. Gaipa G, Cazzaniga G, Valsecchi MG, Panzer-Grumayer R, Buldini B, Silvestri D et al. Time point-dependent concordance of flow cytometry and RQ-PCR inminimal residual disease detection in childhood acute lymphoblasticleukemia. Haematologica 2012; e-pub ahead of print 11 May 2012; doi:10.3324/haematol.2012.060426.

  19. Orfao A, Ciudad J, Lopez-Berges MC, Lopez A, Vidriales B, Caballero MD et al. Acute lymphoblastic leukemia (ALL): detection of minimal residual disease (MRD) at flow cytometry. Leuk Lymphoma 1994; 13 (Suppl 1): 87–90.

    Article  PubMed  Google Scholar 

  20. Coustan-Smith E, Sancho J, Hancock ML, Boyett JM, Behm FG, Raimondi SC et al. Clinical importance of minimal residual disease in childhood acute lymphoblastic leukemia. Blood 2000; 96: 2691–2696.

    CAS  PubMed  Google Scholar 

  21. Porwit-MacDonald A, Bjorklund E, Lucio P, van Lochem EG, Mazur J, Parreira A et al. BIOMED-1 concerted action report: flow cytometric characterization of CD7+ cell subsets in normal bone marrow as a basis for the diagnosis and follow-up of T cell acute lymphoblastic leukemia (T-ALL). Leukemia 2000; 14: 816–825.

    Article  CAS  PubMed  Google Scholar 

  22. Lucio P, Parreira A, van den Beemd MW, van Lochem EG, van Wering ER, Baars E et al. Flow cytometric analysis of normal B cell differentiation: a frame of reference for the detection of minimal residual disease in precursor-B-ALL. Leukemia 1999; 13: 419–427.

    Article  CAS  PubMed  Google Scholar 

  23. Lucio P, Gaipa G, van Lochem EG, van Wering ER, Porwit-MacDonald A, Faria T et al. BIOMED-I concerted action report: flow cytometric immunophenotyping of precursor B-ALL with standardized triple-stainings. BIOMED-1 Concerted Action Investigation of Minimal Residual Disease in Acute Leukemia: International Standardization and Clinical Evaluation. Leukemia 2001; 15: 1185–1192.

    Article  CAS  PubMed  Google Scholar 

  24. Dworzak MN, Froschl G, Printz D, Zen LD, Gaipa G, Ratei R et al. CD99 expression in T-lineage ALL: implications for flow cytometric detection of minimal residual disease. Leukemia 2004; 18: 703–708.

    Article  CAS  PubMed  Google Scholar 

  25. van der Velden VHJ, Willemse MJ, van der Schoot CE, Hahlen K, van Wering ER, van Dongen JJM . Immunoglobulin kappa deleting element rearrangements in precursor-B acute lymphoblastic leukemia are stable targets for detection of minimal residual disease by real-time quantitative PCR. Leukemia 2002; 16: 928–936.

    Article  CAS  PubMed  Google Scholar 

  26. van der Velden VHJ, Wijkhuijs JM, Jacobs DC, van Wering ER, van Dongen JJM . T cell receptor gamma gene rearrangements as targets for detection of minimal residual disease in acute lymphoblastic leukemia by real-time quantitative PCR analysis. Leukemia 2002; 16: 1372–1380.

    Article  CAS  PubMed  Google Scholar 

  27. van der Velden VH, van Dongen JJ . MRD detection in acute lymphoblastic leukemia patients using Ig/TCR gene rearrangements as targets for real-time quantitative PCR. Methods Mol Biol 2009; 538: 115–150.

    Article  CAS  PubMed  Google Scholar 

  28. van der Velden VH, de Bie M, van Wering ER, van Dongen JJ . Immunoglobulin light chain gene rearrangements in precursor-B-acute lymphoblastic leukemia: characteristics and applicability for the detection of minimal residual disease. Haematologica 2006; 91: 679–682.

    CAS  PubMed  Google Scholar 

  29. Szczepanski T, van der Velden VHJ, Hoogeveen PG, De Bie M, Jacobs DCH, Van Wering ER et al. V{delta}2-J{alpha} gene rearrangements are frequent in precursor-B-acute lymphoblastic leukemia but rare in normal lymphoid cells. Blood 2004; 103: 3798–3804.

    Article  CAS  PubMed  Google Scholar 

  30. Bruggemann M, van der Velden VHJ, Raff T, Droese J, Ritgen M, Pott C et al. Rearranged T-cell receptor beta genes represent powerful targets for quantification of minimal residual disease (MRD) in childhood and adult T-cell acute lymphoblastic leukemia (T-ALL). Leukemia 2004; 18: 709–719.

    Article  CAS  PubMed  Google Scholar 

  31. Breit TM, Wolvers-Tettero IL, Beishuizen A, Verhoeven MA, van Wering ER, van Dongen JJ . Southern blot patterns, frequencies, and junctional diversity of T-cell receptor-delta gene rearrangements in acute lymphoblastic leukemia. Blood 1993; 82: 3063–3074.

    CAS  PubMed  Google Scholar 

  32. Beishuizen A, Verhoeven MA, Mol EJ, van Dongen JJ . Detection of immunoglobulin kappa light-chain gene rearrangement patterns by Southern blot analysis. Leukemia 1994; 8: 2228–2236.

    CAS  PubMed  Google Scholar 

  33. van der Velden VH, Cazzaniga G, Schrauder A, Hancock J, Bader P, Panzer-Grumayer ER et al. Analysis of minimal residual disease by Ig/TCR gene rearrangements: guidelines for interpretation of real-time quantitative PCR data. Leukemia 2007; 21: 604–611.

    Article  CAS  PubMed  Google Scholar 

  34. Willemse MJ, Seriu T, Hettinger K, d’Aniello E, Hop WC, Panzer-Grumayer ER et al. Detection of minimal residual disease identifies differences in treatment response between T-ALL and precursor B-ALL. Blood 2002; 99: 4386–4393.

    Article  CAS  PubMed  Google Scholar 

  35. van Dongen JJM, Seriu T, Panzer-Grumayer ER, Biondi A, Pongers-Willemse MJ, Corral L et al. Prognostic value of minimal residual disease in acute lymphoblastic leukaemia in childhood. Lancet 1998; 352: 1731–1738.

    Article  CAS  PubMed  Google Scholar 

  36. Passing H, Bablok W . A new biometrical procedure for testing the equality of measurements from two different analytical methods. Application of linear regression procedures for method comparison studies in clinical chemistry, Part I. J Clin Chem Clin Biochem 1983; 21: 709–720.

    CAS  PubMed  Google Scholar 

  37. van Wering ER, van der Linden-Schrever BE, Szczepanski T, Willemse MJ, Baars EA, van Wijngaarde-Schmitz HM et al. Regenerating normal B-cell precursors during and after treatment of acute lymphoblastic leukaemia: implications for monitoring of minimal residual disease. Br J Haematol 2000; 110: 139–146.

    Article  CAS  PubMed  Google Scholar 

  38. van Lochem EG, Wiegers YM, van den Beemd R, Hahlen K, van Dongen JJM, Hooijkaas H . Regeneration pattern of precursor-B-cells in bone marrow of acute lymphoblastic leukemia patients depends on the type of preceding chemotherapy. Leukemia 2000; 14: 688–695.

    Article  CAS  PubMed  Google Scholar 

  39. van der Sluijs-Gelling AJ, van der Velden VH, Roeffen ET, Veerman AJ, van Wering ER . Immunophenotypic modulation in childhood precursor-B-ALL can be mimicked in vitro and is related to the induction of cell death. Leukemia 2005; 19: 1845–1847.

    Article  CAS  PubMed  Google Scholar 

  40. Gaipa G, Basso G, Maglia O, Leoni V, Faini A, Cazzaniga G et al. Drug-induced immunophenotypic modulation in childhood ALL: implications for minimal residual disease detection. Leukemia 2005; 19: 49–56.

    Article  CAS  PubMed  Google Scholar 

  41. Gaipa G, Basso G, Aliprandi S, Migliavacca M, Vallinoto C, Maglia O et al. Prednisone induces immunophenotypic modulation of CD10 and CD34 in nonapoptotic B-cell precursor acute lymphoblastic leukemia cells. Cytometry B Clin Cytom 2008; 74: 150–155.

    Article  PubMed  Google Scholar 

  42. Dworzak MN, Schumich A, Printz D, Potschger U, Husak Z, Attarbaschi A et al. CD20 up-regulation in pediatric B-cell precursor acute lymphoblastic leukemia during induction treatment: setting the stage for anti-CD20 directed immunotherapy. Blood 2008; 112: 3982–3988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dworzak MN, Gaipa G, Schumich A, Maglia O, Ratei R, Veltroni M et al. Modulation of antigen expression in B-cell precursor acute lymphoblastic leukemia during induction therapy is partly transient: evidence for a drug-induced regulatory phenomenon. Results of the AIEOP-BFM-ALL-FLOW-MRD-Study Group. Cytometry B Clin Cytom 2010; 78: 147–153.

    PubMed  Google Scholar 

  44. van der Velden VH, Wijkhuijs JM, van Dongen JJ . Non-specific amplification of patient-specific Ig/TCR gene rearrangements depends on the time point during therapy: implications for minimal residual disease monitoring. Leukemia 2008; 22: 641–644.

    Article  CAS  PubMed  Google Scholar 

  45. van der Velden VH, Panzer-Grumayer ER, Cazzaniga G, Flohr T, Sutton R, Schrauder A et al. Optimization of PCR-based minimal residual disease diagnostics for childhood acute lymphoblastic leukemia in a multi-center setting. Leukemia 2007; 21: 706–713.

    Article  CAS  PubMed  Google Scholar 

  46. Conter V, Bartram CR, Valsecchi MG, Schrauder A, Panzer-Grumayer R, Moricke A et al. Molecular response to treatment redefines all prognostic factors in children and adolescents with B-cell precursor acute lymphoblastic leukemia: results in 3184 patients of the AIEOP-BFM ALL 2000 study. Blood 2010; 115: 3206–3214.

    Article  CAS  PubMed  Google Scholar 

  47. Stow P, Key L, Chen X, Pan Q, Neale GA, Coustan-Smith E et al. Clinical significance of low levels of minimal residual disease at the end of remission induction therapy in childhood acute lymphoblastic leukemia. Blood 2010; 115: 4657–4663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Schrappe M, Valsecchi MG, Bartram CR, Schrauder A, Panzer-Grumayer R, Moricke A et al. Late MRD response determines relapse risk overall and in subsets of childhood T-cell ALL: results of the AIEOP-BFM-ALL 2000 study. Blood 2011; 118: 2077–2084.

    Article  CAS  PubMed  Google Scholar 

  49. Konrad M, Metzler M, Panzer S, Ostreicher I, Peham M, Repp R et al. Late relapses evolve from slow-responding subclones in t(12;21)-positive acute lymphoblastic leukemia: evidence for the persistence of a preleukemic clone. Blood 2003; 101: 3635–3640.

    Article  CAS  PubMed  Google Scholar 

  50. de Haas V, Verhagen OJ, von dem Borne AE, Kroes W, van den Berg H, van der Schoot CE . Quantification of minimal residual disease in children with oligoclonal B-precursor acute lymphoblastic leukemia indicates that the clones that grow out during relapse already have the slowest rate of reduction during induction therapy. Leukemia 2001; 15: 134–140.

    Article  CAS  PubMed  Google Scholar 

  51. Fronkova E, Muzikova K, Mejstrikova E, Kovac M, Formankova R, Sedlacek P et al. B-cell reconstitution after allogeneic SCT impairs minimal residual disease monitoring in children with ALL. Bone Marrow Transplant 2008; 42: 187–196.

    Article  CAS  PubMed  Google Scholar 

  52. Pedreira CE, Costa ES, Barrena S, Lecrevisse Q, Almeida J, van Dongen JJ et al. Generation of flow cytometry data files with a potentially infinite number of dimensions. Cytometry A 2008; 73: 834–846.

    Article  PubMed  Google Scholar 

  53. Pedreira CE, Costa ES, Almeida J, Fernandez C, Quijano S, Flores J et al. A probabilistic approach for the evaluation of minimal residual disease by multiparameter flow cytometry in leukemic B-cell chronic lymphoproliferative disorders. Cytometry A 2008; 73A: 1141–1150.

    Article  CAS  PubMed  Google Scholar 

  54. Coustan-Smith E, Song G, Clark C, Key L, Liu P, Mehrpooya M et al. New markers for minimal residual disease detection in acute lymphoblastic leukemia. Blood 2011; 117: 6267–6276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. van Dongen JJ, Lhermitte L, Bottcher S, Almeida J, van der Velden VH, Flores-Montero J et al. EuroFlow antibody panels for standardized n-dimensional flow cytometric immunophenotyping of normal, reactive and malignant leukocytes. Leukemia 2012; e-pub ahead of print 3 May 2012; doi:10.1038/leu.2012.120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kalina T, Flores-Montero J, van der Velden VHJ, Martin-Ayuso M, Böttcher S, Ritgen M et al. EuroFlow standardization of flow cytometer instrument settings and immunophenotyping protocols. Leukemia 2012; accepted for publication.

Download references

Acknowledgements

This study was supported by a grant from the Dutch Cancer Society (grant EMCR 2005-3428) and a grant from the Stichting tegen Kanker (ref 226.2008). We gratefully acknowledge the technicians from the laboratory of the DCOG, the working group Leukemia and Lymphoma Diagnostics (Department of Immunology, Erasmus MC) and Sanquin and all clinicians and patients participating in the DCOG-ALL10 protocol.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V H J van der Velden.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Denys, B., van der Sluijs-Gelling, A., Homburg, C. et al. Improved flow cytometric detection of minimal residual disease in childhood acute lymphoblastic leukemia. Leukemia 27, 635–641 (2013). https://doi.org/10.1038/leu.2012.231

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2012.231

Keywords

This article is cited by

Search

Quick links