Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Spotlight Review
  • Published:

Spotlight on miRNA and Hematopoiesis

MicroRNAs in inflammation and immune responses

Abstract

MicroRNAs (miRNAs) are important regulators of gene expression in the immune system. In a few short years, their mechanism of action has been described in various cell lineages within the immune system, targets have been defined and their unique contributions to immune cell function have been examined. Certain miRNAs serve in important negative feedback loops in the immune system, whereas others serve to amplify the response of the immune system by repressing inhibitors of the response. Here, we review some of the better understood mechanisms as well as some emerging concepts of miRNA function. Future work will likely involve defining the function of specific miRNAs in specific immune cell lineages and to utilize them in the design of therapeutic strategies for diseases involving the immune system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Lee RC, Feinbaum RL, Ambros V . The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993; 75: 843–854.

    Article  CAS  PubMed  Google Scholar 

  2. Wightman B, Ha I, Ruvkun G . Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 1993; 75: 855–862.

    CAS  PubMed  Google Scholar 

  3. Kozomara A, Griffiths-Jones S . miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 2011; 39 (Database issue): D152–D157.

    CAS  PubMed  Google Scholar 

  4. Kim VN, Han J, Siomi MC . Biogenesis of small RNAs in animals. Nat Rev 2009; 10: 126–139.

    CAS  Google Scholar 

  5. Winter J, Jung S, Keller S, Gregory RI, Diederichs S . Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 2009; 11: 228–234.

    CAS  PubMed  Google Scholar 

  6. Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J 2004; 23: 4051–4060.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 2003; 425: 415–419.

    CAS  PubMed  Google Scholar 

  8. Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B, Cooch N et al. The microprocessor complex mediates the genesis of microRNAs. Nature 2004; 432: 235–240.

    CAS  PubMed  Google Scholar 

  9. Bernstein E, Caudy AA, Hammond SM, Hannon GJ . Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 2001; 409: 363–366.

    CAS  PubMed  Google Scholar 

  10. Ketting RF, Fischer SE, Bernstein E, Sijen T, Hannon GJ, Plasterk RH . Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev 2001; 15: 2654–2659.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Czech B, Hannon GJ . Small RNA sorting: matchmaking for Argonautes. Nat Rev Genet 2011; 12: 19–31.

    CAS  PubMed  Google Scholar 

  12. Cheloufi S, Dos Santos CO, Chong MM, Hannon GJ . A dicer-independent miRNA biogenesis pathway that requires Ago catalysis. Nature 2010; 465: 584–589.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Cifuentes D, Xue H, Taylor DW, Patnode H, Mishima Y, Cheloufi S et al. A novel miRNA processing pathway independent of Dicer requires Argonaute2 catalytic activity. Science 2010; 328: 1694–1698.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB . Prediction of mammalian microRNA targets. Cell 2003; 115: 787–798.

    CAS  PubMed  Google Scholar 

  15. Lewis BP, Burge CB, Bartel DP . Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005; 120: 15–20.

    CAS  PubMed  Google Scholar 

  16. Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP . MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 2007; 27: 91–105.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Bartel DP . MicroRNAs: target recognition and regulatory functions. Cell 2009; 136: 215–233.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu J, Carmell MA, Rivas FV, Marsden CG, Thomson JM, Song JJ et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science 2004; 305: 1437–1441.

    CAS  PubMed  Google Scholar 

  19. Song JJ, Smith SK, Hannon GJ, Joshua-Tor L . Crystal structure of Argonaute and its implications for RISC slicer activity. Science 2004; 305: 1434–1437.

    CAS  PubMed  Google Scholar 

  20. Nilsen TW . Mechanisms of microRNA-mediated gene regulation in animal cells. Trends Genet 2007; 23: 243–249.

    CAS  PubMed  Google Scholar 

  21. Baek D, Villen J, Shin C, Camargo FD, Gygi SP, Bartel DP . The impact of microRNAs on protein output. Nature 2008; 455: 64–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Guo H, Ingolia NT, Weissman JS, Bartel DP . Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 2010; 466: 835–840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. O’Connell RM, Taganov KD, Boldin MP, Cheng G, Baltimore D . MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci USA 2007; 104: 1604–1609.

    PubMed  PubMed Central  Google Scholar 

  24. Chi SW, Zang JB, Mele A, Darnell RB . Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 2009; 460: 479–486.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y et al. A microRNA component of the p53 tumour suppressor network. Nature 2007; 447: 1130–1134.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S et al. A microRNA polycistron as a potential human oncogene. Nature 2005; 435: 828–833.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Bommer GT, Gerin I, Feng Y, Kaczorowski AJ, Kuick R, Love RE et al. p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol 2007; 17: 1298–1307.

    CAS  PubMed  Google Scholar 

  28. Chang TC, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH et al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 2007; 26: 745–752.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Raver-Shapira N, Marciano E, Meiri E, Spector Y, Rosenfeld N, Moskovits N et al. Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell 2007; 26: 731–743.

    CAS  PubMed  Google Scholar 

  30. Davis BN, Hilyard AC, Lagna G, Hata A . SMAD proteins control DROSHA-mediated microRNA maturation. Nature 2008; 454: 56–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Yang W, Chendrimada TP, Wang Q, Higuchi M, Seeburg PH, Shiekhattar R et al. Modulation of microRNA processing and expression through RNA editing by ADAR deaminases. Nat Struct Mol Biol 2006; 13: 13–21.

    CAS  PubMed  Google Scholar 

  32. Suzuki HI, Yamagata K, Sugimoto K, Iwamoto T, Kato S, Miyazono K . Modulation of microRNA processing by p53. Nature 2009; 460: 529–533.

    CAS  PubMed  Google Scholar 

  33. Wiesen JL, Tomasi TB . Dicer is regulated by cellular stresses and interferons. Mol Immunol 2009; 46: 1222–1228.

    CAS  PubMed  Google Scholar 

  34. Viswanathan SR, Daley GQ, Gregory RI . Selective blockade of microRNA processing by Lin28. Science (New York, NY) 2008; 320: 97–100.

    CAS  Google Scholar 

  35. Hobert O . Gene regulation by transcription factors and microRNAs. Science 2008; 319: 1785–1786.

    CAS  PubMed  Google Scholar 

  36. O’Neill LA, Sheedy FJ, McCoy CE . MicroRNAs: the fine-tuners of Toll-like receptor signalling. Nat Rev Immunol 2011; 11: 163–175.

    PubMed  Google Scholar 

  37. Sheedy FJ, Palsson-McDermott E, Hennessy EJ, Martin C, O’Leary JJ, Ruan Q et al. Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21. Nat Immunol 2010; 11: 141–147.

    CAS  PubMed  Google Scholar 

  38. Boldin MP, Taganov KD, Rao DS, Yang L, Zhao JL, Kalwani M et al. miR-146a is a significant brake on autoimmunity, myeloproliferation, and cancer in mice. J Exp Med 2011; 208: 1189–1201.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhao JL, Rao DS, Boldin MP, Taganov KD, O’Connell RM, Baltimore D . NF-{kappa}B dysregulation in microRNA-146a-deficient mice drives the development of my. Proc Natl Acad Sci USA 2011; 108: 9184–9189.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Lu LF, Boldin MP, Chaudhry A, Lin LL, Taganov KD, Hanada T et al. Function of miR-146a in controlling Treg cell-mediated regulation of Th1 responses. Cell 2010; 142: 914–929.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Xiao C, Calado DP, Galler G, Thai TH, Patterson HC, Wang J et al. MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb. Cell 2007; 131: 146–159.

    CAS  PubMed  Google Scholar 

  42. Xiao C, Rajewsky K . MicroRNA control in the immune system: basic principles. Cell 2009; 136: 26–36.

    CAS  PubMed  Google Scholar 

  43. Lal A, Navarro F, Maher CA, Maliszewski LE, Yan N, O’Day E et al. miR-24 Inhibits cell proliferation by targeting E2F2, MYC, and other cell-cycle genes via binding to “seedless” 3′UTR microRNA recognition elements. Mol Cell 2009; 35: 610–625.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Vasudevan S, Tong Y, Steitz JA . Switching from repression to activation: microRNAs can up-regulate translation. Science 2007; 318: 1931–1934.

    CAS  PubMed  Google Scholar 

  45. O’Connell RM, Zhao JL, Rao DS . MicroRNA function in myeloid biology. Blood 2011; 118: 2960–2969.

    PubMed  PubMed Central  Google Scholar 

  46. Baldridge MT, King KY, Boles NC, Weksberg DC, Goodell MA . Quiescent haematopoietic stem cells are activated by IFN-gamma in response to chronic infection. Nature 2010; 465: 793–797.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Nagai Y, Garrett KP, Ohta S, Bahrun U, Kouro T, Akira S et al. Toll-like receptors on hematopoietic progenitor cells stimulate innate immune system replenishment. Immunity 2006; 24: 801–812.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. O’Connell RM, Rao DS, Chaudhuri AA, Boldin MP, Taganov KD, Nicoll J et al. Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder. J Exp Med 2008; 205: 585–594.

    PubMed  PubMed Central  Google Scholar 

  49. O’Connell RM, Chaudhuri AA, Rao DS, Baltimore D . Inositol phosphatase SHIP1 is a primary target of miR-155. Proc Natl Acad Sci USA 2009; 106: 7113–7118.

    PubMed  PubMed Central  Google Scholar 

  50. Androulidaki A, Iliopoulos D, Arranz A, Doxaki C, Schworer S, Zacharioudaki V et al. The kinase Akt1 controls macrophage response to lipopolysaccharide by regulating microRNAs. Immunity 2009; 31: 220–231.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. O’Connell RM, Kahn D, Gibson WS, Round JL, Scholz RL, Chaudhuri AA et al. MicroRNA-155 promotes autoimmune inflammation by enhancing inflammatory T cell development. Immunity 2010; 33: 607–619.

    PubMed  PubMed Central  Google Scholar 

  52. Starczynowski DT, Kuchenbauer F, Argiropoulos B, Sung S, Morin R, Muranyi A et al. Identification of miR-145 and miR-146a as mediators of the 5q- syndrome phenotype. Nat Med 2010; 16: 49–58.

    CAS  PubMed  Google Scholar 

  53. Nahid MA, Pauley KM, Satoh M, Chan EK . miR-146a is critical for endotoxin-induced tolerance: IMPLICATION IN INNATE IMMUNITY. J Biol Chem 2009; 284: 34590–34599.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Nahid MA, Satoh M, Chan EK . Mechanistic role of microRNA-146a in endotoxin-induced differential cross-regulation of TLR signaling. J Immunol 2011; 186: 1723–1734.

    CAS  PubMed  Google Scholar 

  55. Hou J, Wang P, Lin L, Liu X, Ma F, An H et al. MicroRNA-146a feedback inhibits RIG-I-dependent Type I IFN production in macrophages by targeting TRAF6, IRAK1, and IRAK2. J Immunol 2009; 183: 2150–2158.

    CAS  PubMed  Google Scholar 

  56. Tang Y, Luo X, Cui H, Ni X, Yuan M, Guo Y et al. MicroRNA-146A contributes to abnormal activation of the type I interferon pathway in human lupus by targeting the key signaling proteins. Arthritis Rheum 2009; 60: 1065–1075.

    CAS  PubMed  Google Scholar 

  57. Chen CZ, Li L, Lodish HF, Bartel DP . MicroRNAs modulate hematopoietic lineage differentiation. Science 2004; 303: 83–86.

    CAS  PubMed  Google Scholar 

  58. Fazi F, Racanicchi S, Zardo G, Starnes LM, Mancini M, Travaglini L et al. Epigenetic silencing of the myelopoiesis regulator microRNA-223 by the AML1/ETO oncoprotein. Cancer Cell 2007; 12: 457–466.

    CAS  PubMed  Google Scholar 

  59. Fazi F, Rosa A, Fatica A, Gelmetti V, De Marchis ML, Nervi C et al. A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis. Cell 2005; 123: 819–831.

    CAS  PubMed  Google Scholar 

  60. Johnnidis JB, Harris MH, Wheeler RT, Stehling-Sun S, Lam MH, Kirak O et al. Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature 2008; 451: 1125–1129.

    CAS  PubMed  Google Scholar 

  61. Kawai T, Akira S . Signaling to NF-kappaB by Toll-like receptors. Trends Mol Med 2007; 13: 460–469.

    CAS  PubMed  Google Scholar 

  62. Taganov KD, Boldin MP, Chang KJ, Baltimore D . NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA 2006; 103: 12481–12486.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. McCoy CE, Sheedy FJ, Qualls JE, Doyle SL, Quinn SR, Murray PJ et al. IL-10 inhibits miR-155 induction by toll-like receptors. J Biol Chem 2010; 285: 20492–20498.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Muzio M, Bosisio D, Polentarutti N, D’Amico G, Stoppacciaro A, Mancinelli R et al. Differential expression and regulation of toll-like receptors (TLR) in human leukocytes: selective expression of TLR3 in dendritic cells. J Immunol 2000; 164: 5998–6004.

    CAS  PubMed  Google Scholar 

  65. Benakanakere MR, Li Q, Eskan MA, Singh AV, Zhao J, Galicia JC et al. Modulation of TLR2 protein expression by miR-105 in human oral keratinocytes. J Biol Chem 2009; 284: 23107–23115.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Liu G, Friggeri A, Yang Y, Park YJ, Tsuruta Y, Abraham E . miR-147, a microRNA that is induced upon Toll-like receptor stimulation, regulates murine macrophage inflammatory responses. Proc Natl Acad Sci USA 2009; 106: 15819–15824.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Hoffmann A, Baltimore D . Circuitry of nuclear factor kappaB signaling. Immunol Rev 2006; 210: 171–186.

    PubMed  Google Scholar 

  68. Chen R, Alvero AB, Silasi DA, Kelly MG, Fest S, Visintin I et al. Regulation of IKKbeta by miR-199a affects NF-kappaB activity in ovarian cancer cells. Oncogene 2008; 27: 4712–4723.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Eis PS, Tam W, Sun L, Chadburn A, Li Z, Gomez MF et al. Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc Natl Acad Sci USA 2005; 102: 3627–3632.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Li T, Morgan MJ, Choksi S, Zhang Y, Kim YS, Liu ZG . MicroRNAs modulate the noncanonical transcription factor NF-kappaB pathway by regulating expression of the kinase IKKalpha during macrophage differentiation. Nat Immunol 2010; 11: 799–805.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Bazzoni F, Rossato M, Fabbri M, Gaudiosi D, Mirolo M, Mori L et al. Induction and regulatory function of miR-9 in human monocytes and neutrophils exposed to proinflammatory signals. Proc Natl Acad Sci USA 2009; 106: 5282–5287.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Asirvatham AJ, Magner WJ, Tomasi TB . miRNA regulation of cytokine genes. Cytokine 2009; 45: 58–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Carballo E, Lai WS, Blackshear PJ . Feedback inhibition of macrophage tumor necrosis factor-alpha production by tristetraprolin. Science (New York, NY) 1998; 281: 1001–1005.

    CAS  Google Scholar 

  74. Lai WS, Carballo E, Strum JR, Kennington EA, Phillips RS, Blackshear PJ . Evidence that tristetraprolin binds to AU-rich elements and promotes the deadenylation and destabilization of tumor necrosis factor alpha mRNA. Mol Cell Biol 1999; 19: 4311–4323.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. El Gazzar M, McCall CE . MicroRNAs distinguish translational from transcriptional silencing during endotoxin tolerance. J Biol Chem 2010; 285: 20940–20951.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Hardy RR, Hayakawa K . B cell development pathways. Annu Rev Immunol 2001; 19: 595–621.

    CAS  PubMed  Google Scholar 

  77. Harwood NE, Batista FD . Early events in B cell activation. Annu Rev Immunol 2010; 28: 185–210.

    CAS  PubMed  Google Scholar 

  78. Montecino-Rodriguez E, Dorshkind K . New perspectives in B-1 B cell development and function. Trends Immunol 2006; 27: 428–433.

    CAS  PubMed  Google Scholar 

  79. Koralov SB, Muljo SA, Galler GR, Krek A, Chakraborty T, Kanellopoulou C et al. Dicer ablation affects antibody diversity and cell survival in the B lymphocyte lineage. Cell 2008; 132: 860–874.

    CAS  PubMed  Google Scholar 

  80. Zhou B, Wang S, Mayr C, Bartel DP, Lodish HF . miR-150, a microRNA expressed in mature B and T cells, blocks early B cell development when expressed prematurely. Proc Natl Acad Sci USA 2007; 104: 7080–7085.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Rao DS, O’Connell RM, Chaudhuri AA, Garcia-Flores Y, Geiger TL, Baltimore D . MicroRNA-34a perturbs B lymphocyte development by repressing the forkhead box transcription factor Foxp1. Immunity 2010; 33: 48–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Belver L, de Yebenes VG, Ramiro AR . MicroRNAs prevent the generation of autoreactive antibodies. Immunity 2010; 33: 713–722.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Cozine CL, Wolniak KL, Waldschmidt TJ . The primary germinal center response in mice. Curr Opin Immunol 2005; 17: 298–302.

    CAS  PubMed  Google Scholar 

  84. Wolniak KL, Shinall SM, Waldschmidt TJ . The germinal center response. Crit Rev Immunol 2004; 24: 39–65.

    CAS  PubMed  Google Scholar 

  85. Thai TH, Calado DP, Casola S, Ansel KM, Xiao C, Xue Y et al. Regulation of the germinal center response by microRNA-155. Science 2007; 316: 604–608.

    CAS  PubMed  Google Scholar 

  86. Vigorito E, Perks KL, Abreu-Goodger C, Bunting S, Xiang Z, Kohlhaas S et al. microRNA-155 regulates the generation of immunoglobulin class-switched plasma cells. Immunity 2007; 27: 847–859.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Teng G, Hakimpour P, Landgraf P, Rice A, Tuschl T, Casellas R et al. MicroRNA-155 is a negative regulator of activation-induced cytidine deaminase. Immunity 2008; 28: 621–629.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Dorsett Y, McBride KM, Jankovic M, Gazumyan A, Thai TH, Robbiani DF et al. MicroRNA-155 suppresses activation-induced cytidine deaminase-mediated Myc-Igh translocation. Immunity 2008; 28: 630–638.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. de Yebenes VG, Belver L, Pisano DG, Gonzalez S, Villasante A, Croce C et al. miR-181b negatively regulates activation-induced cytidine deaminase in B cells. J Exp Med 2008; 205: 2199–2206.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Fahnestock ML, Tamir I, Narhi L, Bjorkman PJ . Thermal stability comparison of purified empty and peptide-filled forms of a class I MHC molecule. Science (New York, NY) 1992; 258: 1658–1662.

    CAS  Google Scholar 

  91. Janeway CA, Travers P, Walport M, Schlomchik MJ . Signaling through immune system receptors In: Janeway CA (ed) Immunobiology: The Immune System in Health and Disease, 6th edn. Garland Science Publishing: New York, 2005, pp 203–236.

    Google Scholar 

  92. Cobb BS, Nesterova TB, Thompson E, Hertweck A, O’Connor E, Godwin J et al. T cell lineage choice and differentiation in the absence of the RNase III enzyme Dicer. J Exp Med 2005; 201: 1367–1373.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Muljo SA, Ansel KM, Kanellopoulou C, Livingston DM, Rao A, Rajewsky K . Aberrant T cell differentiation in the absence of Dicer. J Exp Med 2005; 202: 261–269.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Li QJ, Chau J, Ebert PJ, Sylvester G, Min H, Liu G et al. miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell 2007; 129: 147–161.

    CAS  PubMed  Google Scholar 

  95. Pekarsky Y, Santanam U, Cimmino A, Palamarchuk A, Efanov A, Maximov V et al. Tcl1 expression in chronic lymphocytic leukemia is regulated by miR-29 and miR-181. Cancer Res 2006; 66: 11590–11593.

    CAS  PubMed  Google Scholar 

  96. Rudensky AY . Regulatory T cells and Foxp3. Immunol Rev 2011; 241: 260–268.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Liston A, Lu LF, O’Carroll D, Tarakhovsky A, Rudensky AY . Dicer-dependent microRNA pathway safeguards regulatory T cell function. J Exp Med 2008; 205: 1993–2004.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Lu LF, Thai TH, Calado DP, Chaudhry A, Kubo M, Tanaka K et al. Foxp3-dependent microRNA155 confers competitive fitness to regulatory T cells by targeting SOCS1 protein. Immunity 2009; 30: 80–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Li J, Wan Y, Guo Q, Zou L, Zhang J, Fang Y et al. Altered microRNA expression profile with miR-146a upregulation in CD4+ T cells from patients with rheumatoid arthritis. Arthritis Res Ther 2010; 12: R81.

    PubMed  PubMed Central  Google Scholar 

  100. Pauley KM, Satoh M, Chan AL, Bubb MR, Reeves WH, Chan EK . Upregulated miR-146a expression in peripheral blood mononuclear cells from rheumatoid arthritis patients. Arthritis Res Ther 2008; 10: R101.

    PubMed  PubMed Central  Google Scholar 

  101. Stanczyk J, Pedrioli DM, Brentano F, Sanchez-Pernaute O, Kolling C, Gay RE et al. Altered expression of MicroRNA in synovial fibroblasts and synovial tissue in rheumatoid arthritis. Arthritis Rheum 2008; 58: 1001–1009.

    PubMed  Google Scholar 

  102. Xiao C, Srinivasan L, Calado DP, Patterson HC, Zhang B, Wang J et al. Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. Nat Immunol 2008; 9: 405–414.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Du C, Liu C, Kang J, Zhao G, Ye Z, Huang S et al. MicroRNA miR-326 regulates T(H)-17 differentiation and is associated with the pathogenesis of multiple sclerosis. Nat Immunol 2009; 10: 1252–1259.

    CAS  PubMed  Google Scholar 

  104. Marcucci G, Mrozek K, Radmacher MD, Garzon R, Bloomfield CD . The prognostic and functional role of microRNAs in acute myeloid leukemia. Blood 2011; 117: 1121–1129.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Calin GA, Croce CM . MicroRNA signatures in human cancers. Nat Rev Cancer 2006; 6: 857–866.

    CAS  PubMed  Google Scholar 

  106. O’Connell RM, Chaudhuri AA, Rao DS, Gibson WS, Balazs AB, Baltimore D . MicroRNAs enriched in hematopoietic stem cells differentially regulate long-term hematopoietic output. Proc Natl Acad Sci USA 2010; 107: 14235–14240.

    PubMed  PubMed Central  Google Scholar 

  107. Bousquet M, Harris MH, Zhou B, Lodish HF . MicroRNA miR-125b causes leukemia. Proc Natl Acad Sci USA 2010; 107: 21558–21563.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Han YC, Park CY, Bhagat G, Zhang J, Wang Y, Fan JB et al. microRNA-29a induces aberrant self-renewal capacity in hematopoietic progenitors, biased myeloid development, and acute myeloid leukemia. J Exp Med 2010; 207: 475–489.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Medina PP, Nolde M, Slack FJ . OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature 2010; 467: 86–90.

    CAS  PubMed  Google Scholar 

  110. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 2002; 99: 15524–15529.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Calin GA, Liu CG, Sevignani C, Ferracin M, Felli N, Dumitru CD et al. MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci USA 2004; 101: 11755–11760.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 2005; 102: 13944–13949.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Klein U, Lia M, Crespo M, Siegel R, Shen Q, Mo T et al. The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell 2010; 17: 28–40.

    CAS  PubMed  Google Scholar 

  114. Small EM, Olson EN . Pervasive roles of microRNAs in cardiovascular biology. Nature 2011; 469: 336–342.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Mukherji S, Ebert MS, Zheng GX, Tsang JS, Sharp PA, van Oudenaarden A . MicroRNAs can generate thresholds in target gene expression. Nat Genet 2011; 43: 854–859.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Tang B, Xiao B, Liu Z, Li N, Zhu ED, Li BS et al. Identification of MyD88 as a novel target of miR-155, involved in negative regulation of Helicobacter pylori-induced inflammation. FEBS Lett 2010; 584: 1481–1486.

    CAS  PubMed  Google Scholar 

  117. DeVincenzo J, Lambkin-Williams R, Wilkinson T, Cehelsky J, Nochur S, Walsh E et al. A randomized, double-blind, placebo-controlled study of an RNAi-based therapy directed against respiratory syncytial virus. Proc Natl Acad Sci USA 2010; 107: 8800–8805.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M et al. Silencing of microRNAs in vivo with ‘antagomirs’. Nature 2005; 438: 685–689.

    PubMed  Google Scholar 

  119. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO . Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 2007; 9: 654–659.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Although this review is meant to be comprehensive, we acknowledge that we may not have included all papers in this large and growing field because of space limitations. We thank David Baltimore and Ryan O’Connell for helpful discussions over the years. DSR is a Kimmel Scholar of the Sidney Kimmel Foundation for Cancer Research and has received a career development award from the NIH (5K08-CA133251). JC is a recipient of the Eugene V. Cota-Robles Fellowship from UCLA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D S Rao.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Contreras, J., Rao, D. MicroRNAs in inflammation and immune responses. Leukemia 26, 404–413 (2012). https://doi.org/10.1038/leu.2011.356

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2011.356

Keywords

This article is cited by

Search

Quick links