Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Dual-specificity phosphatases 2: surprising positive effect at the molecular level and a potential biomarker of diseases

Abstract

Dual-specificity phosphatases (DUSPs) is an emerging subclass of the protein tyrosine phosphatase gene superfamily, a heterogeneous group of protein phosphatases that can dephosphorylate both phosphotyrosine and phosphoserine/phosphothreonine residues within the one substrate. Recently, a series of investigations of DUSPs defined their essential roles in cell proliferation, cancer and the immune response. This review will focus on DUSP2, its involvement in different diseases and its potential as a therapeutic target.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Keshet Y, Seger R . The MAP kinase signaling cascades: a system of hundreds of components regulates a diverse array of physiological functions. Methods Mol Biol 2010; 661: 3–38.

    Article  CAS  Google Scholar 

  2. Boutros T, Chevet E, Metrakos P . Mitogen-activated protein (MAP) kinase/MAP kinase phosphatase regulation: roles in cell growth, death, and cancer. Pharmacol Rev 2008; 60: 261–310.

    Article  CAS  Google Scholar 

  3. Duan W, Wong WS . Targeting mitogen-activated protein kinases for asthma. Curr Drug Targets 2006; 7: 691–698.

    Article  CAS  Google Scholar 

  4. Jeffrey KL, Camps M, Rommel C, Mackay CR . Targeting dual-specificity phosphatases: manipulating MAP kinase signalling and immune responses. Nat Rev Drug Discov 2007; 6: 391–403.

    Article  CAS  Google Scholar 

  5. Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K et al. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 2001; 22: 153–183.

    CAS  Google Scholar 

  6. Chang L, Karin M . Mammalian MAP kinase signalling cascades. Nature 2001; 410: 37–40.

    Article  CAS  Google Scholar 

  7. Dickinson RJ, Keyse SM . Diverse physiological functions for dual-specificity MAP kinase phosphatases. J Cell Sci 2006; 119 (Pt 22): 4607–4615.

    Article  CAS  Google Scholar 

  8. Owens DM, Keyse SM . Differential regulation of MAP kinase signalling by dual-specificity protein phosphatases. Oncogene 2007; 26: 3203–3213.

    Article  CAS  Google Scholar 

  9. Zhang Y, Blattman JN, Kennedy NJ, Duong J, Nguyen T, Wang Y et al. Regulation of innate and adaptive immune responses by MAP kinase phosphatase 5. Nature 2004; 430: 793–797.

    Article  CAS  Google Scholar 

  10. Karlsson M, Mathers J, Dickinson RJ, Mandl M, Keyse SM . Both nuclear-cytoplasmic shuttling of the dual specificity phosphatase MKP-3 and its ability to anchor MAP kinase in the cytoplasm are mediated by a conserved nuclear export signal. J Biol Chem 2004; 279: 41882–41891.

    Article  CAS  Google Scholar 

  11. Masuda K, Shima H, Watanabe M, Kikuchi K . MKP-7, a novel mitogen-activated protein kinase phosphatase, functions as a shuttle protein. J Biol Chem 2001; 276: 39002–39011.

    Article  CAS  Google Scholar 

  12. Saxena M, Mustelin T . Extracellular signals and scores of phosphatases: all roads lead to MAP kinase. Semin Immunol 2000; 12: 387–396.

    Article  CAS  Google Scholar 

  13. Alonso A, Sasin J, Bottini N, Friedberg I, Friedberg I, Osterman A et al. Protein tyrosine phosphatases in the human genome. Cell 2004; 117: 699–711.

    Article  CAS  Google Scholar 

  14. Patterson KI, Brummer T, O’Brien PM, Daly RJ . Dual-specificity phosphatases: critical regulators with diverse cellular targets. Biochem J 2009; 418: 475–489.

    Article  CAS  Google Scholar 

  15. Bermudez O, Pagès G, Gimond C . The dual-specificity MAP kinase phosphatases: critical roles in development and cancer. Am J Physiol Cell Physiol 2010; 299: C189–C202.

    Article  CAS  Google Scholar 

  16. Camps M, Nichols A, Arkinstall S . Dual specificity phosphatases: a gene family for control of MAP kinase function. FASEB J 2000; 14: 6–16.

    Article  CAS  Google Scholar 

  17. Kim SC, Hahn JS, Min YH, Yoo NC, Ko YW, Lee WJ . Constitutive activation of extracellular signal-regulated kinase in human acute leukemias: combined role of activation of MEK, hyperexpression of extracellular signal-regulated kinase, and downregulation of a phosphatase, PAC1. Blood 1999; 93: 3893–3899.

    CAS  PubMed  Google Scholar 

  18. Lin SC, Chien CW, Lee JC, Yeh YC, Hsu KF, Lai YY et al. Suppression of dual-specificity phosphatase-2 by hypoxia increases chemoresistance and malignancy in human cancer cells. J Clin Invest 2011; 121: 1905–1916.

    Article  CAS  Google Scholar 

  19. Sano H, Wada S, Eguchi H, Osaki A, Saeki T, Nishiyama M . Quantitative prediction of tumor response to neoadjuvant chemotherapy in breast cancer: novel marker genes and prediction model using the expression levels. Breast Cancer 2012; 19: 37–45.

    Article  Google Scholar 

  20. Yin Y, Liu YX, Jin YJ, Hall EJ, Barrett JC . PAC1 phosphatase is a transcription target of p53 in signalling apoptosis and growth suppression. Nature 2003; 422: 527–531.

    Article  CAS  Google Scholar 

  21. Givant-Horwitz V, Davidson B, Goderstad JM, Nesland JM, Tropé CG, Reich R . The PAC-1 dual specificity phosphatase predicts poor outcome in serous ovarian carcinoma. Gynecol Oncol 2004; 93: 517–523.

    Article  CAS  Google Scholar 

  22. Shen WH, Wang J, Wu J, Zhurkin VB, Yin Y . Mitogen-activated protein kinase phosphatase 2: a novel transcription target of p53 in apoptosis. Cancer Res 2006; 66: 6033–6039.

    Article  CAS  Google Scholar 

  23. Wu J, Jin YJ, Calaf GM, Huang WL, Yin Y . PAC1 is a direct transcription target of E2F-1 in apoptotic signaling. Oncogene 2007; 26: 6526–6535.

    Article  CAS  Google Scholar 

  24. Klotz C, Ziegler T, Figueiredo AS, Rausch S, Hepworth MR, Obsivac N et al. A helminth immunomodulator exploits host signaling events to regulate cytokine production in macrophages. PLoS Pathog 2011; 7: e1001248.

    Article  CAS  Google Scholar 

  25. Rohan PJ, Davis P, Moskaluk CA, Kearns M, Krutzsch H, Siebenlist U et al. PAC-1: a mitogen-induced nuclear protein tyrosine phosphatase. Science 1993; 259: 1763–1766.

    Article  CAS  Google Scholar 

  26. Lisbona C, Alemany S, Fernández-Renart M . Regulation of ERK2 dephosphorylation in G1-stimulated rat T lymphoblasts. J Clin Immunol 1997; 17: 494–501.

    Article  CAS  Google Scholar 

  27. Boschert U, Muda M, Camps M, Dickinson R, Arkinstall S . Induction of the dual specificity phosphatase PAC1 in rat brain following seizure activity. Neuroreport 1997; 8: 3077–3080.

    Article  CAS  Google Scholar 

  28. Gum RJ, Gaede LL, Heindel MA, Waring JF, Trevillyan JM, Zinker BA et al. Antisense protein tyrosine phosphatase 1B reverses activation of p38 mitogen-activated protein kinase in liver of ob/ob mice. Mol Endocrinol 2003; 17: 1131–1143.

    Article  CAS  Google Scholar 

  29. Grumont RJ, Rasko JE, Strasser A, Gerondakis S . Activation of the mitogen-activated protein kinase pathway induces transcription of the PAC-1 phosphatase gene. Mol Cell Biol 1996; 16: 2913–2921.

    Article  CAS  Google Scholar 

  30. Theodosiou A, Ashworth A . MAP kinase phosphatases. Genome Biol 2002; 3: reviews3009.1–3009.10.

    Article  Google Scholar 

  31. Chu Y, Solski PA, Khosravi-Far R, Der CJ, Kelly K . The mitogen-activated protein kinase phosphatases PAC1, MKP-1, and MKP-2 have unique substrate specificities and reduced activity in vivo toward the ERK2 sevenmaker mutation. J Biol Chem 1996; 271: 6497–6501.

    Article  CAS  Google Scholar 

  32. Ward Y, Gupta S, Jensen P, Wartmann M, Davis RJ, Kelly K . Control of MAP kinase activation by the mitogen-induced threonine/tyrosine phosphatase PAC1. Nature 1994; 367: 651–654.

    Article  CAS  Google Scholar 

  33. Cooper JA, Bowen-Pope DF, Raines E, Ross R, Hunter T . Similar effects of platelet-derived growth factor and epidermal growth factor on the phosphorylation of tyrosine in cellular proteins. Cell 1982; 31: 263–273.

    Article  CAS  Google Scholar 

  34. Kazlauskas A, Cooper JA . Protein kinase C mediates platelet-derived growth factor-induced tyrosine phosphorylation of p42. J Cell Biol 1988; 106: 1395–1402.

    Article  CAS  Google Scholar 

  35. Hong J, Qian T, Le Q, Sun X, Wu J, Chen J et al. NGF promotes cell cycle progression by regulating D-type cyclins via PI3K/Akt and MAPK/Erk activation in human corneal epithelial cells. Mol Vis 2012; 18: 758–764.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Boulton TG, Yancopoulos GD, Gregory JS, Slaughter C, Moomaw C, Hsu J et al. An insulin-stimulated protein kinase similar to yeast kinases involved in cell cycle control. Science 1990; 249: 64–67.

    Article  CAS  Google Scholar 

  37. Ray LB, Sturgill TW . Insulin-stimulated microtubule-associated protein kinase is phosphorylated on tyrosine and threonine in vivo. Proc Natl Acad Sci USA 1988; 85: 3753–3757.

    Article  CAS  Google Scholar 

  38. Yoon S, Seger R . The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth Factors 2006; 24: 21–44.

    Article  CAS  Google Scholar 

  39. Meloche S, Pouysségur J . The ERK1/2 mitogen-activated protein kinase pathway as a master regulator of the G1- to S-phase transition. Oncogene 2007; 26: 3227–3239.

    Article  CAS  Google Scholar 

  40. Boucher MJ, Morisset J, Vachon PH, Reed JC, Lainé J, Rivard N . MEK/ERK signaling pathway regulates the expression of Bcl-2, Bcl-X(L), and Mcl-1 and promotes survival of human pancreatic cancer cells. J Cell Biochem 2000; 79: 355–369.

    Article  CAS  Google Scholar 

  41. Salmeron A, Ahmad TB, Carlile GW, Pappin D, Narsimhan RP, Ley SC . Activation of MEK-1 and SEK-1 by Tpl-2 proto-oncoprotein, a novel MAP kinase. EMBO J 1996; 15: 817–826.

    Article  CAS  Google Scholar 

  42. Dumitru CD, Ceci JD, Tsatsanis C, Kontoyiannis D, Stamatakis K, Lin JH et al. TNF-alpha induction by LPS is regulated posttranscriptionally via a Tpl2/ERK-dependent pathway. Cell 2000; 103: 1071–1083.

    Article  CAS  Google Scholar 

  43. Zhang Q, Muller M, Chen CH, Zeng L, Farooq A, Zhou MM . New insights into the catalytic activation of the MAPK phosphatase PAC-1 induced by its substrate MAPK ERK2 binding. J Mol Biol 2005; 354: 777–788.

    Article  CAS  Google Scholar 

  44. Farooq A, Plotnikova O, Chaturvedi G, Yan S, Zeng L, Zhang Q et al. Solution structure of the MAPK phosphatase PAC-1 catalytic domain. Insights into substrate-induced enzymatic activation of MKP. Structure 2003; 11: 155–164.

    Article  CAS  Google Scholar 

  45. Caunt CJ, Rivers CA, Conway-Campbell BL, Norman MR, McArdle CA . Epidermal growth factor receptor and protein kinase C signaling to ERK2: spatiotemporal regulation of ERK2 by dual specificity phosphatases. J Biol Chem 2008; 283: 6241–6252.

    Article  CAS  Google Scholar 

  46. Han J, Lee JD, Bibbs L, Ulevitch RJA . MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science 1994; 265: 808–811.

    Article  CAS  Google Scholar 

  47. Cuadrado A, Nebreda AR . Mechanisms and functions of p38 MAPK signalling. Biochem J 2010; 429: 403–417.

    Article  CAS  Google Scholar 

  48. Thornton TM, Rincon M . Non-classical p38 map kinase functions: cell cycle checkpoints and survival. Int J Biol Sci 2009; 5: 44–51.

    Article  CAS  Google Scholar 

  49. Cuenda A, Rousseau S . p38 MAP-kinases pathway regulation, function and role in human diseases. Biochim Biophys Acta 2007; 1773: 1358–1375.

    Article  CAS  Google Scholar 

  50. Powell DW, Rane MJ, Joughin BA, Kalmukova R, Hong JH, Tidor B et al. P roteomic identification of 14-3-3zeta as a mitogen-activated protein kinase-activated protein kinase 2 substrate: role in dimer formation and ligand binding. Mol Cell Biol 2003; 23: 5376–5387.

    Article  CAS  Google Scholar 

  51. O’Dea KP, Dokpesi JO, Tatham KC, Wilson MR, Takata M . Regulation of monocyte subset proinflammatory responses within the lung microvasculature by the p38 MAPK/MK2 pathway. Am J Physiol Lung Cell Mol Physiol 2011; 301: L812–L821.

    Article  Google Scholar 

  52. Lee JC, Laydon JT, McDonnell PC, Gallagher TF, Kumar S, Green D et al. A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature 1994; 372: 739–746.

    Article  CAS  Google Scholar 

  53. Karin M . Nuclear factor-kappaB in cancer development and progression. Nature 2006; 441: 431–436.

    Article  CAS  Google Scholar 

  54. Kontoyiannis D, Pasparakis M, Pizarro TT, Cominelli F, Kollias G . Impaired on/off regulation of TNF biosynthesis in mice lacking TNF AU-rich elements: implications for joint and gut-associated immunopathologies. Immunity 1999; 10: 387–398.

    Article  CAS  Google Scholar 

  55. Kim C, Sano Y, Todorova K, Carlson BA, Arpa L, Celada A et al. The kinase p38 alpha serves cell type-specific inflammatory functions in skin injury and coordinates pro- and anti-inflammatory gene expression. Nat Immunol 2008; 9: 1019–1027.

    Article  CAS  Google Scholar 

  56. Chen P, Hutter D, Yang X, Gorospe M, Davis RJ, Liu Y . Discordance between the binding affinity of mitogen-activated protein kinase subfamily members for MAP kinase phosphatase-2 and their ability to activate the phosphatase catalytically. J Biol Chem 2001; 276: 29440–29449.

    Article  CAS  Google Scholar 

  57. Shen YH, Godlewski J, Zhu J, Sathyanarayana P, Leaner V, Birrer MJ et al. Cross-talk between JNK/SAPK and ERK/MAPK pathways: sustained activation of JNK blocks ERK activation by mitogenic factors. J Biol Chem 2003; 278: 26715–26721.

    Article  CAS  Google Scholar 

  58. Junttila MR, Li SP, Westermarck J . Phosphatase-mediated crosstalk between MAPK signaling pathways in the regulation of cell survival. FASEB J 2008; 22: 954–965.

    Article  CAS  Google Scholar 

  59. Lang R, Hammer M, Mages J . DUSP meet immunology: dual specificity MAPK phosphatases in control of the inflammatory response. J Immunol 2006; 177: 7497–7504.

    Article  CAS  Google Scholar 

  60. Dong C, Davis RJ, Flavell RA . MAP kinases in the immune response. Annu Rev Immunol 2002; 20: 55–72.

    Article  CAS  Google Scholar 

  61. Kyriakis JM, Avruch J . Mammalian MAPK signal transduction pathways activated by stress and inflammation: a 10-year update. Physiol Rev 2012; 92: 689–737.

    Article  CAS  Google Scholar 

  62. Jeffrey KL, Brummer T, Rolph MS, Liu SM, Callejas NA, Grumont RJ et al. Positive regulation of immune cell function and inflammatory responses by phosphatase PAC-1. Nat Immunol 2006; 7: 274–283.

    Article  CAS  Google Scholar 

  63. Keyse SM . Dual-specificity MAP kinase phosphatases (MKPs) and cancer. Cancer Metastasis Rev 2008; 27: 253–261.

    Article  CAS  Google Scholar 

  64. Wu MH, Lin SC, Hsiao KY, Tsai SJ . Hypoxia-inhibited dual-specificity phosphatase-2 expression in endometriotic cells regulates cyclooxygenase-2 expression. J Pathol 2011; 225: 390–400.

    Article  CAS  Google Scholar 

  65. Lebrun AH, Moll-Khosrawi P, Pohl S, Makrypidi G, Storch S, Kilian D et al. Analysis of potential biomarkers and modifier genes affecting the clinical course of CLN3 disease. Mol Med 2011; 17: 1253–1261.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was partially supported by the NIAAA (1R01 AA016342), NIH, the Veterans Administration Medical Center, and DNA Discovery Core, University of Tennessee, Memphis, TN. We thank Xuenan Yan for editing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W Gu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, W., Jiao, Y., Postlethwaite, A. et al. Dual-specificity phosphatases 2: surprising positive effect at the molecular level and a potential biomarker of diseases. Genes Immun 14, 1–6 (2013). https://doi.org/10.1038/gene.2012.54

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2012.54

Keywords

This article is cited by

Search

Quick links