Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Report
  • Published:

Yeast surface display platform for rapid discovery of conformationally selective nanobodies

Abstract

Camelid single-domain antibody fragments (‘nanobodies’) provide the remarkable specificity of antibodies within a single 15-kDa immunoglobulin VHH domain. This unique feature has enabled applications ranging from use as biochemical tools to therapeutic agents. Nanobodies have emerged as especially useful tools in protein structural biology, facilitating studies of conformationally dynamic proteins such as G-protein-coupled receptors (GPCRs). Nearly all nanobodies available to date have been obtained by animal immunization, a bottleneck restricting many applications of this technology. To solve this problem, we report a fully in vitro platform for nanobody discovery based on yeast surface display. We provide a blueprint for identifying nanobodies, demonstrate the utility of the library by crystallizing a nanobody with its antigen, and most importantly, we utilize the platform to discover conformationally selective nanobodies to two distinct human GPCRs. To facilitate broad deployment of this platform, the library and associated protocols are freely available for nonprofit research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Design and construction of synthetic nanobody library.
Fig. 2: Validation of nanobody platform using HSA as the target antigen.
Fig. 3: Structural and functional modulator nanobodies targeting a GPCR.
Fig. 4: Isolation and characterization of agonist-bound A2AR-specific nanobodies.

Similar content being viewed by others

References

  1. Hamers-Casterman, C. et al. Naturally occurring antibodies devoid of light chains. Nature 363, 446–448 (1993).

    Article  CAS  PubMed  Google Scholar 

  2. Muyldermans, S. Nanobodies: natural single-domain antibodies. Annu. Rev. Biochem. 82, 775–797 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Irannejad, R. et al. Conformational biosensors reveal GPCR signalling from endosomes. Nature 495, 534–538 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Rasmussen, S. G. et al. Structure of a nanobody-stabilized active state of the β(2) adrenoceptor. Nature 469, 175–180 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Staus, D. P. et al. Allosteric nanobodies reveal the dynamic range and diverse mechanisms of G-protein-coupled receptor activation. Nature 535, 448–452 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Manglik, A., Kobilka, B. K. & Steyaert, J. Nanobodies to study G protein-coupled receptor structure and function. Annu. Rev. Pharmacol. Toxicol. 57, 19–37 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. Moutel, S. et al. NaLi-H1: A universal synthetic library of humanized nanobodies providing highly functional antibodies and intrabodies. eLife 5, e16228 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gao, J., Sidhu, S. S. & Wells, J. A. Two-state selection of conformation-specific antibodies. Proc. Natl. Acad. Sci. USA 106, 3071–3076 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rizk, S. S. et al. Allosteric control of ligand-binding affinity using engineered conformation-specific effector proteins. Nat. Struct. Mol. Biol. 18, 437–442 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Adams, J. J. & Sidhu, S. S. Synthetic antibody technologies. Curr. Opin. Struct. Biol. 24, 1–9 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Kayushin, A., Korosteleva, M. & Miroshnikov, A. Large-scale solid-phase preparation of 3′-unprotected trinucleotide phosphotriesters–precursors for synthesis of trinucleotide phosphoramidites. Nucleosides Nucleotides Nucleic Acids 19, 1967–1976 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Kayushin, A. L. et al. A convenient approach to the synthesis of trinucleotide phosphoramidites–synthons for the generation of oligonucleotide/peptide libraries. Nucleic Acids Res 24, 3748–3755 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Boder, E. T. & Wittrup, K. D. Yeast surface display for screening combinatorial polypeptide libraries. Nat. Biotechnol. 15, 553–557 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Kruse, A. C. et al. Activation and allosteric modulation of a muscarinic acetylcholine receptor. Nature 504, 101–106 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rakestraw, J. A., Sazinsky, S. L., Piatesi, A., Antipov, E. & Wittrup, K. D. Directed evolution of a secretory leader for the improved expression of heterologous proteins and full-length antibodies in Saccharomyces cerevisiae. Biotechnol. Bioeng. 103, 1192–1201 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Orlean, P. Architecture and biosynthesis of the Saccharomyces cerevisiae cell wall. Genetics 192, 775–818 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Makrides, S. C. et al. Extended in vivo half-life of human soluble complement receptor type 1 fused to a serum albumin-binding receptor. J. Pharmacol. Exp. Ther. 277, 534–542 (1996).

    CAS  PubMed  Google Scholar 

  18. Van Roy, M. et al. The preclinical pharmacology of the high affinity anti-IL-6R Nanobody ALX-0061 supports its clinical development in rheumatoid arthritis. Arthritis Res. Ther. 17, 135 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Tijink, B. M. et al. Improved tumor targeting of anti-epidermal growth factor receptor Nanobodies through albumin binding: taking advantage of modular Nanobody technology. Mol. Cancer Ther. 7, 2288–2297 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Kim, C. C., Wilson, E. B. & DeRisi, J. L. Improved methods for magnetic purification of malaria parasites and haemozoin. Malar. J. 9, 17 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Rasmussen, S. G. et al. Crystal structure of the β2 adrenergic receptor-Gs protein complex. Nature 477, 549–555 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ring, A. M. et al. Adrenaline-activated structure of β2-adrenoceptor stabilized by an engineered nanobody. Nature 502, 575–579 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Manglik, A. & Kobilka, B. The role of protein dynamics in GPCR function: insights from the β2AR and rhodopsin. Curr. Opin. Cell Biol. 27, 136–143 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Rosenbaum, D. M. et al. Structure and function of an irreversible agonist-β(2) adrenoceptor complex. Nature 469, 236–240 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Staus, D. P. et al. Regulation of β2-adrenergic receptor function by conformationally selective single-domain intrabodies. Mol. Pharmacol. 85, 472–481 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Vijayan, D., Young, A., Teng, M. W. L. & Smyth, M. J. Targeting immunosuppressive adenosine in cancer. Nat. Rev. Cancer 17, 709–724 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Hino, T. et al. G-protein-coupled receptor inactivation by an allosteric inverse-agonist antibody. Nature 482, 237–240 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Weiskopf, K. et al. Engineered SIRPα variants as immunotherapeutic adjuvants to anticancer antibodies. Science 341, 88–91 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Manglik, A. et al. Structural insights into the dynamic process of β2-adrenergic receptor signaling. Cell 161, 1101–1111 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zou, Y., Weis, W. I. & Kobilka, B. K. N-terminal T4 lysozyme fusion facilitates crystallization of a G protein coupled receptor. PLoS One 7, e46039 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jaakola, V. P. et al. The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 322, 1211–1217 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Whorton, M. R. et al. A monomeric G protein-coupled receptor isolated in a high-density lipoprotein particle efficiently activates its G protein. Proc. Natl. Acad. Sci. USA 104, 7682–7687 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liberles, S. D. & Buck, L. B. A second class of chemosensory receptors in the olfactory epithelium. Nature 442, 645–650 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Caffrey, M. & Cherezov, V. Crystallizing membrane proteins using lipidic mesophases. Nat. Protoc. 4, 706–731 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hein, K. L. et al. Crystallographic analysis reveals a unique lidocaine binding site on human serum albumin. J. Struct. Biol. 171, 353–360 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr 60, 2126–2132 (2004).

    Article  PubMed  Google Scholar 

  37. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr 66, 213–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Financial support for this work was provided by the Vallee Foundation (A.C.K.), the Smith Family Foundation (A.C.K.), National Institutes of Health grants 5DP5OD021345 (A.C.K.), 1DP5OD023048 (A.M.), and 1DP5OD023088 (A.M.R.), the Lundbeck Foundation (grant no. R37-A3457 to S.G.F.R.), and the Danish Independent Research Council (grant no. 0602-02407B to S.G.F.R.).

Author information

Authors and Affiliations

Authors

Contributions

A.C.K., A.M., and C.M. designed and generated the nanobody library. C.M., A.S.B., and A.C.K. performed quality control of the library. C.M., R.P., S.Z., J.X.O., D.H., and A.M. prepared antigens, performed selections, and isolated nanobody binders. C.M., R.P., and S.C.E. characterized nanobodies. A.M.R., A.M., and A.C.K. developed the modified yeast display system and associated expression vectors. M.W. and S.G.F.R. purified the A2A adenosine receptor. C.M., A.M., and A.C.K. wrote the manuscript with assistance and input from all coauthors.

Corresponding authors

Correspondence to Aashish Manglik or Andrew C. Kruse.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Integrated supplementary information

Supplementary Figure 1 Biochemical validation of nanobody clones

(a–k) Randomly chosen nanobodies were expressed and purified from E. coli, then analyzed by size exclusion chromatography to assess monodispersity. (l) SDS-PAGE analysis of nanobody purity following one-step nickel affinity purification.

Supplementary Figure 2 Design of display system

(a) The display system was engineered using the high affinity SIRPα variant CV1 as a test protein, and its ligand CD47 ectodomain as the staining reagent. A biotin tag is schematized as a glowing red circle. (b) Length of the stalk region determines accessibility of a displayed protein as a function of molecular weight. (c) Analytical flow cytometry plots showing length dependence for two staining reagents: CD47 biotin and α-HA antibody. The 649 amino acid long stalk was used in all nanobody display experiments.

Supplementary Figure 3 Analysis of HSA-targeted nanobodies

(a) Library design was assessed by monitoring the change in amino acid frequency in CDR3 throughout selection rounds with HSA as the antigen. Few changes were observed, with the only notable trend a modest increase in basic residue frequency and a decline in acidic residue frequency. (b) Assessment of Nb.b201 binding to human serum albumin by surface plasmon resonance, comparison with mouse serum albumin which shows no detectable binding. (c) 2Fo-Fc composite omit map contoured at 1.5 σ for antigen bound Nb.b201. The structure of both bound (yellow) and free (gray) forms of the nanobody are shown, highlighting structural divergence. (d) 2Fo-Fc composite omit map contoured at 1.5 σ for free Nb.b201.

Supplementary Figure 4 Discovery of nanobodies with nonpurified antigen

(a) Conditioned medium containing adiponectin (left lane) was used for selection of nanobodies. It shows a complex mixture of proteins as assessed by SDS-PAGE. For reference, purified adiponectin is shown in the right lane. Adiponectin exists as a mix of 16-mers, hexamers, and trimers. (b) Schematic of selection process. Fluorescent anti-FLAG antibody was used to specifically mark those yeast cells that display adiponectin-binding nanobodies. (c) Flow cytometry analysis of final clone pool, showing that the library was highly enriched in adiponectin-binding clones. (d) Sequences of five selected clones showed highly diverse CDR3 sequence composition and length. (e) Binding assessed using in vitro pull-down with purified adiponectin globular domain. (f) Binding to adiponectin was further confirmed in vitro using surface plasmon resonance. Kinetic fit is shown for clone Nb.AQ103.

Supplementary Figure 5 Affinity of β2AR-binding nanobodies

On-yeast titration to estimate affinity of β2AR binding nanobodies. EC50 values are summarized in the lower right. Bottom panel shows measurement of conformational selectivity for selected clones as assessed by flow cytometry.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5, Supplementary Tables 1 and 2 and Supplementary Note 1

Life Sciences Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McMahon, C., Baier, A.S., Pascolutti, R. et al. Yeast surface display platform for rapid discovery of conformationally selective nanobodies. Nat Struct Mol Biol 25, 289–296 (2018). https://doi.org/10.1038/s41594-018-0028-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-018-0028-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing