Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Decreasing P-selectin and ICAM-1 via activating Akt: a possible mechanism by which PARG inhibits adhesion of mouse colorectal carcinoma CT26 cells to platelets

Abstract

Poly (ADP-ribose) glycohydrolase (PARG), which was discovered during studies on DNA damage study and in inflammation research, is an attractive target protein in current cancer research. The enzymatic hydrolysis of poly (ADP-ribose) (PAR) has not been clarified in the regulation of cancer. The purpose of this study was to understand the relationship between PARG and the adhesion of colorectal carcinoma CT26 cells to platelets. PARG was silenced by short hairpin RNA (shRNA) transfection in CT26 cells. A fluorescence method was used to identify adhesion of CT26 cells to platelets and the expression of poly (ADP-ribose) polymerase (PARP)-1, p-Akt, nuclear factor kappa-B (NF-κB), P-selectin and intercellular adhesion molecule-1 (ICAM-1) was analyzed by western blot in various treated groups and control groups. The results were as follows: (a) PARG silencing led to inhibition of adhesion of CT26 cells to platelets, whereas an inhibitor of p-Akt boosted adhesion of PARG-short hairpin RNA interference (shRNAi) CT26 cells to platelets; (b) a PARP-1 inhibitor depressed the expression of P-selectin and ICAM-1 in CT26 cells; (c) PARG silencing increased phosphorylation of Akt and decreased expression of PARP-1, NF-κB, ICAM-1 and P-selectin in CT26 cells; and (d) a p-Akt inhibitor intensified expression of NF-κB, ICAM-1 and P-selectin in PARG-shRNAi CT26 cells accordingly. These results showed the effectiveness of knockout of PARG in inhibiting adhesion of CT26 cells to platelets and its connection with the phosphatidylinositol 3 kinase/Akt pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Bonicalzi M-E, Haince J-F, Droit A, Poirier GG . Regulation of poly(ADP-ribose) metabolism by poly(ADP-ribose) glycohydrolase: where and when? Cell Mol Life Sci 2005; 62: 739–750.

    Article  CAS  Google Scholar 

  2. Min W, Wang ZQ . Poly (ADP-ribose) glycohydrolase (PARG) and its therapeutic potential. Front Biosci 2009; 14: 1619–1626.

    Article  CAS  Google Scholar 

  3. Sun Y, Zhang T, Wang B, Li H, Li P . Tannic acid, an inhibitor of poly(ADP-ribose) glycohydrolase, sensitizes ovarian carcinoma cells to cisplatin. Anticancer Drugs 2012; 23: 979–990.

    CAS  PubMed  Google Scholar 

  4. Erdélyi K, Bai P, Kovács I, Szabó E, Mocsár G, Kakuk A et al. Dual role of poly(ADP-ribose) glycohydrolase in the regulation of cell death in oxidatively stressed A549 cells. FASEB J 2009; 23: 3553–3563.

    Article  Google Scholar 

  5. Keil C, Gröbe T, Oei SL . MNNG-induced cell death is controlled by interactions between PARP-1, poly(ADP-ribose) glycohydrolase, and XRCC1. J Biol Chem 2006; 281: 34394–34405.

    Article  CAS  Google Scholar 

  6. Fisher AEO, Hochegger H, Takeda S, Caldecott KW . Poly(ADP-ribose) polymerase 1 accelerates single-strand break repair in concert with poly(ADP-ribose) glycohydrolase. Mol Cell Biol 2007; 27: 5597–5605.

    Article  CAS  Google Scholar 

  7. Frizzell KM, Gamble MJ, Berrocal JG, Zhang T, Krishnakumar R, Cen Y et al. Global analysis of transcriptional regulation by poly(ADP-ribose) polymerase-1 and poly(ADP-ribose) glycohydrolase in MCF-7 human breast cancer cells. J Biol Chem 2009; 284: 33926–33938.

    Article  CAS  Google Scholar 

  8. Fauzee NJ, Li Q, Wang YL, Pan J . Silencing poly (ADP-ribose) glycohydrolase (PARG) expression inhibits growth of human colon cancer cells in vitro via PI3K/Akt/NF?-B pathway. Pathol Oncol Res 2012; 18: 191–199.

    Article  CAS  Google Scholar 

  9. Hao LX, Wang YL, Li YY . Correlation of PARP expression with P-selectin and ICAM-1 expression in colorectal carcinoma. Basic Med Sci Clin 2008; 26: 882–887.

    Google Scholar 

  10. Frenette PS, Denis CV, Weiss L, Jurk K, Subbarao S, Kehrel B et al. P-selectin glycoprotein ligand 1 (PSGL-1) is expressed on platelets and can mediate platelet–endothelial interactions in vivo. J Exp Med 2000; 191: 1413–1422.

    Article  CAS  Google Scholar 

  11. Stone JP, Wagner DD . P-selectin mediates adhesion of platelets to neuroblastoma and small cell lung cancer. J Clin Invest 1993; 92: 804–813.

    Article  CAS  Google Scholar 

  12. Nair KS, Naidoo R, Chetty R . Expression of cell adhesion molecules in oesophageal carcinoma and its prognostic value. J Clin Pathol 2005; 58: 343–351.

    Article  CAS  Google Scholar 

  13. Kim JE, Lee S, Han KS . Aurintricarboxylic acid inhibits the nuclear factor-κB-dependent expression of intercellular cell adhesion molecule-1 and endothelial cell selectin on activated human endothelial cells. Blood Coagul Fibrinolysis 2011; 22: 132–139.

    Article  CAS  Google Scholar 

  14. Biggerstaff JP, Seth N, Amirkhosravi A, Amaya M, Fogarty S, Meyer TV et al. Soluble fibrin augments platelet/tumor cell adherence in vitro and in vivo, and enhances experimental metastasis. Clin Exp Metastasis 1999; 17: 723–730.

    Article  CAS  Google Scholar 

  15. McCaffery PJ, Berridge MV . Expression of the leukocyte functional molecule (LFA-1) on mouse platelets. Blood 1986; 67: 1757–1764.

    CAS  PubMed  Google Scholar 

  16. Li B, Cheung PY, Wang X, Tsao SW, Ling MT, Wong YC et al. Id-1 activation of PI3K/Akt/NFκB signaling pathway and its significance in promoting survival of esophageal cancer cells. Carcinogenesis 2007; 28: 2313–2320.

    Article  CAS  Google Scholar 

  17. Asano T, Yao Y, Zhu J, Li D, Abbruzzese JL, Reddy SAG . The PI 3-kinase/Akt signaling pathway is activated due to aberrant Pten expression and targets transcription factors NF-κB and c-Myc in pancreatic cancer cells. Oncogene 2004; 23: 8571–8580.

    Article  CAS  Google Scholar 

  18. Shinohara M, Chung YJ, Saji M, Ringel MD . AKT in thyroid tumorigenesis and progression. Endocrinol 2007; 148: 942–947.

    Article  CAS  Google Scholar 

  19. Crowell JA, Steele VE, Fay JR . Targeting the AKT protein kinase for cancer chemoprevention. Mol Cancer Ther 2007; 6: 2139–2148.

    Article  CAS  Google Scholar 

  20. Kane LP, Shapiro VS, Stokoe D, Weiss A . Induction of NF-κB by the Akt/PKB kinase. Curr Biol 1999; 9: 601–604.

    Article  CAS  Google Scholar 

  21. Romashkova JA, Makarov SS . NF-κB is a target of AKT in anti-apoptotic PDGF signalling. Nature 1999; 401: 86–90.

    Article  CAS  Google Scholar 

  22. Wang Y, Wang X, Sun M, Zhang Z, Cao H, Chen X . NF-kB activity-dependent P-selectin involved in ox-LDL-induced foam cell formation in U937 cell. Biochem Biophys Res Commun 2011; 411: 543–548.

    Article  CAS  Google Scholar 

  23. Melotti P, Nicolis E, Tamanini A, Rolfini R, Pavirani A, Cabrini G . Activation of NF-κB mediates ICAM-1 induction in respiratory cells exposed to an adenovirus-derived vector. Gene Ther 2001; 8: 1436–1442.

    Article  CAS  Google Scholar 

  24. Tapodi A, Debreceni B, Hanto K, Bognar Z, Wittmann I, Gallyas F et al. Pivotal role of Akt activation in mitochondrial protection and cell survival by poly(ADP-ribose)polymerase-1 inhibition in oxidative stress. J Biol Chem 2005; 280: 35767–35775.

    Article  CAS  Google Scholar 

  25. García S, Mera A, Gómez-Reino JJ, Conde C . Poly(ADP-ribose) polymerase suppression protects rheumatoid synovial fibroblasts from Fas-induced apoptosis. Rheumatol 2009; 48: 483–489.

    Article  Google Scholar 

  26. Veres B, Radnai B, Gallyas F, Varbiro G, Berente Z, Osz E et al. Regulation of kinase cascades and transcription factors by a poly(ADP-ribose) polymerase-1 inhibitor, 4-hydroxyquinazoline, in lipopolysaccharide-induced inflammation in mice. J Pharmacol Exp Ther 2004; 310: 247–255.

    Article  CAS  Google Scholar 

  27. Fuster MM, Brown JR, Wang L, Esko JD . A disaccharide precursor of sialyl Lewis X inhibits metastatic potential of tumor cells. Cancer Res 2003; 63: 2775–2781.

    CAS  PubMed  Google Scholar 

  28. Kim YJ, Borsig L, Varki NM, Varki A . P-selectin deficiency attenuates tumor growth and metastasis. Proc Natl Acad Sci USA 1998; 95: 9325–9330.

    Article  CAS  Google Scholar 

  29. Verheul H, Jorna AS, Hoekman K, Broxterman HJ, Gebbink M, Pinedo HM . Vascular endothelial growth factor-stimulated endothelial cells promote adhesion and activation of platelets. Blood 2000; 96: 4216–4221.

    CAS  PubMed  Google Scholar 

  30. Shau H, Roth MD, Golub SH . Regulation of natural killer function by non-lymphoid cells. Nat Immunol 1993; 12: 235–249.

    CAS  Google Scholar 

  31. Li Q, Li M, Wang YL, Fauzee NJ, Yang Y, Pan J et al. RNA interference of PARG could inhibit the metastatic potency of colorectal carcinoma cells via PI3-kinase/Akt pathway. Cell Physiol Biochem 2012; 29: 361–372.

    Article  Google Scholar 

  32. Rapizzi E, Fossati S, Moroni F, Chiarugi A . Inhibition of poly(ADP-ribose) glycohydrolase by gallotannin selectively up-regulates expression of proinflammatory Genes. Mol Pharmacol 2004; 66: 890–898.

    Article  CAS  Google Scholar 

  33. Veto S, Acs P, Bauer J, Lassmann H, Berente Z, Setalo G et al. Inhibiting poly(ADP-ribose) polymerase: a potential therapy against oligodendrocyte death. Brain 2010; 133: 822–834.

    Article  Google Scholar 

  34. Bartha E, Solti I, Kereskai L, Lantos J, Plozer E, Magyar K et al. PARP inhibition delays transition of hypertensive cardiopathy to heart failure in spontaneously hypertensive rats. Cardiovasc Res 2009; 83: 501–510.

    Article  CAS  Google Scholar 

  35. Li M, Threadgill MD, Wang Y, Cai L, Lin X . Poly(ADP-ribose) polymerase inhibition down-regulates expression of metastasis-related genes in CT26 colorectal carcinoma cells. Pathobiology 2009; 76: 108–116.

    Article  CAS  Google Scholar 

  36. Rane MJ, Song Y, Jin S, Barati MT, Wu R, Kausar H et al. Interplay between Akt and p38 MAPK pathways in the regulation of renal tubular cell apoptosis associated with diabetic nephropathy. Am J Physiol Renal Physiol 2010; 298: F49–F61.

    Article  CAS  Google Scholar 

  37. Pan J, Fauzee NJ, Wang YL, Sheng YT, Tang Y, Wang JQ et al. Effect of silencing PARG in human colorectal carcinoma LoVo cells on the ability of HUVEC migration and proliferation. Cancer Gene Ther 2012; 19: 715–722.

    Article  CAS  Google Scholar 

  38. Cuzzocrea S, Mazzon E, Genovese T, Crisafulli C, Min WK, Di Paola R et al. Role of poly(ADP-ribose) glycohydrolase in the development of inflammatory bowel disease in mice. Free Radic Biol Med 2007; 42: 90–105.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Lin Xiao and Bu You-Quan for excellent technical help. This work was supported by the National Nature Science Foundation of China (NSFC: 30870946).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y Wang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, J., Li, M., Threadgill, M. et al. Decreasing P-selectin and ICAM-1 via activating Akt: a possible mechanism by which PARG inhibits adhesion of mouse colorectal carcinoma CT26 cells to platelets. Cancer Gene Ther 20, 487–492 (2013). https://doi.org/10.1038/cgt.2013.44

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2013.44

Keywords

Search

Quick links