Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Armed replicating adenoviruses for cancer virotherapy

Abstract

Conditionally replicating adenoviruses (CRAds) have many advantages as agents for cancer virotherapy and have been safely used in human clinical trials. However, replicating adenoviruses have been limited in their ability to eliminate tumors by oncolysis. Thus, the efficacy of these agents must be improved. To this end, CRAds have been engineered to express therapeutic transgenes that exert antitumor effects independent of direct viral oncolysis. These transgenes can be expressed under native gene control elements, in which case placement within the genome determines the expression profile, or they can be controlled by exogenous promoters. The therapeutic transgenes used to arm replicating adenoviruses can be broadly classified into three groups. There are those that mediate killing of the infected cell, those that modulate the tumor microenvironment and those with immunomodulatory functions. Overall, the studies to date in animal models have shown that arming a CRAd with a rationally chosen therapeutic transgene can improve its antitumor efficacy over that of an unarmed CRAd. However, a number of obstacles must be overcome before the full potential of armed CRAds can be realized in the human clinical context. Hence, strategies are being developed to permit intravenous delivery to disseminated cancer cells, overcome the immune response and enable in vivo monitoring of the biodistribution and activity of armed CRAds.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Ries SJ, Brandts CH, Chung AS, Biederer CH, Hann BC, Lipner EM et al. Loss of p14ARF in tumor cells facilitates replication of the adenovirus mutant dl1520 (ONYX-015). Nat Med 2000; 6: 1128–1133.

    Article  CAS  PubMed  Google Scholar 

  2. Parato KA, Senger D, Forsyth PA, Bell JC . Recent progress in the battle between oncolytic viruses and tumours. Nat Rev Cancer 2005; 5: 965–976.

    Article  CAS  PubMed  Google Scholar 

  3. Chu RL, Post DE, Khuri FR, Van Meir EG . Use of replicating oncolytic adenoviruses in combination therapy for cancer. Clin Cancer Res 2004; 10: 5299–5312.

    Article  CAS  PubMed  Google Scholar 

  4. Le LP, Rivera AA, Glasgow JN, Ternovoi VV, Wu H, Wang M et al. Infectivity enhancement for adenoviral transduction of canine osteosarcoma cells. Gene Therapy 2006; 13: 389–399.

    Article  CAS  PubMed  Google Scholar 

  5. Bischoff JR, Kirn DH, Williams A, Heise C, Horn S, Muna M et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells [see comments]. Science 1996; 274: 373–376.

    Article  CAS  PubMed  Google Scholar 

  6. O’Shea CC, Johnson L, Bagus B, Choi S, Nicholas C, Shen A et al. Late viral RNA export, rather than p53 inactivation, determines ONYX-015 tumor selectivity. Cancer Cell 2004; 6: 611–623.

    Article  PubMed  Google Scholar 

  7. Conrad C, Miller CR, Ji Y, Gomez-Manzano C, Bharara S, McMurray JS et al. Delta24-hyCD adenovirus suppresses glioma growth in vivo by combining oncolysis and chemosensitization. Cancer Gene Ther 2005; 12: 284–294.

    Article  CAS  PubMed  Google Scholar 

  8. Rodriguez R, Schuur ER, Lim HY, Henderson GA, Simons JW, Henderson DR . Prostate attenuated replication competent adenovirus (ARCA) CN706: a selective cytotoxic for prostate-specific antigen-positive prostate cancer cells. Cancer Res 1997; 57: 2559–2563.

    CAS  PubMed  Google Scholar 

  9. Zhang L, Akbulut H, Tang Y, Peng X, Pizzorno G, Sapi E et al. Adenoviral vectors with E1A regulated by tumor-specific promoters are selectively cytolytic for breast cancer and melanoma. Mol Ther 2002; 6: 386–393.

    Article  CAS  PubMed  Google Scholar 

  10. Akbulut H, Zhang L, Tang Y, Deisseroth A . Cytotoxic effect of replication-competent adenoviral vectors carrying L-plastin promoter regulated E1A and cytosine deaminase genes in cancers of the breast, ovary and colon. Cancer Gene Ther 2003; 10: 388–395.

    Article  CAS  PubMed  Google Scholar 

  11. Matsubara S, Wada Y, Gardner TA, Egawa M, Park MS, Hsieh CL et al. A conditional replication-competent adenoviral vector, Ad-OC-E1a, to cotarget prostate cancer and bone stroma in an experimental model of androgen-independent prostate cancer bone metastasis. Cancer Res 2001; 61: 6012–6019.

    CAS  PubMed  Google Scholar 

  12. Ono HA, Davydova JG, Adachi Y, Takayama K, Barker SD, Reynolds PN et al. Promoter-controlled infectivity-enhanced conditionally replicative adenoviral vectors for the treatment of gastric cancer. J Gastroenterol 2005; 40: 31–42.

    Article  CAS  PubMed  Google Scholar 

  13. Wirth T, Zender L, Schulte B, Mundt B, Plentz R, Rudolph KL et al. A telomerase-dependent conditionally replicating adenovirus for selective treatment of cancer. Cancer Res 2003; 63: 3181–3188.

    CAS  PubMed  Google Scholar 

  14. Su CQ, Sham J, Xue HB, Wang XH, Chua D, Cui ZF et al. Potent antitumoral efficacy of a novel replicative adenovirus CNHK300 targeting telomerase-positive cancer cells. J Cancer Res Clin Oncol 2004; 130: 591–603.

    Article  CAS  PubMed  Google Scholar 

  15. Savontaus MJ, Sauter BV, Huang TG, Woo SL . Transcriptional targeting of conditionally replicating adenovirus to dividing endothelial cells. Gene Therapy 2002; 9: 972–979.

    Article  CAS  PubMed  Google Scholar 

  16. Doronin K, Kuppuswamy M, Toth K, Tollefson AE, Krajcsi P, Krougliak V et al. Tissue-specific, tumor-selective, replication-competent adenovirus vector for cancer gene therapy. J Virol 2001; 75: 3314–3324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kirn D . Clinical research results with dl1520 (Onyx-015), a replication-selective adenovirus for the treatment of cancer: what have we learned? Gene Therapy 2001; 8: 89–98.

    Article  CAS  PubMed  Google Scholar 

  18. DeWeese TL, van der Poel H, Li S, Mikhak B, Drew R, Goemann M et al. A phase I trial of CV706, a replication-competent, PSA selective oncolytic adenovirus, for the treatment of locally recurrent prostate cancer following radiation therapy. Cancer Res 2001; 61: 7464–7472.

    CAS  PubMed  Google Scholar 

  19. Small EJ, Carducci MA, Burke JM, Rodriguez R, Fong L, van Ummersen L et al. A phase I trial of intravenous CG7870, a replication-selective, prostate-specific antigen-targeted oncolytic adenovirus, for the treatment of hormone-refractory, metastatic prostate cancer. Mol Ther 2006; 14: 107–117.

    Article  CAS  PubMed  Google Scholar 

  20. Hermiston T . Gene delivery from replication-selective viruses: arming guided missiles in the war against cancer. J Clin Invest 2000; 105: 1169–1172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bett AJ, Prevec L, Graham FL . Packaging capacity and stability of human adenovirus type 5 vectors. J Virol 1993; 67: 5911–5921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang JF, Hu C, Geng Y, Selm J, Klein SB, Orazi A et al. Treatment of a human breast cancer xenograft with an adenovirus vector containing an interferon gene results in rapid regression due to viral oncolysis and gene therapy. Proc Natl Acad Sci USA 1996; 93: 4513–4518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Doronin K, Toth K, Kuppuswamy M, Ward P, Tollefson AE, Wold WS . Tumor-specific, replication-competent adenovirus vectors overexpressing the adenovirus death protein. J Virol 2000; 74: 6147–6155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tollefson AE, Scaria A, Hermiston TW, Ryerse JS, Wold LJ, Wold WS . The adenovirus death protein (E3-11.6K) is required at very late stages of infection for efficient cell lysis and release of adenovirus from infected cells. J Virol 1996; 70: 2296–2306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hawkins LK, Hermiston T . Gene delivery from the E3 region of replicating human adenovirus: evaluation of the E3B region. Gene Therapy 2001; 8: 1142–1148.

    Article  CAS  PubMed  Google Scholar 

  26. Hawkins LK, Hermiston TW . Gene delivery from the E3 region of replicating human adenovirus: evaluation of the ADP region. Gene Therapy 2001; 8: 1132–1141.

    Article  CAS  PubMed  Google Scholar 

  27. Hawkins LK, Johnson L, Bauzon M, Nye JA, Castro D, Kitzes GA et al. Gene delivery from the E3 region of replicating human adenovirus: evaluation of the 6.7K/gp19K region. Gene Therapy 2001; 8: 1123–1131.

    Article  CAS  PubMed  Google Scholar 

  28. Nanda D, Vogels R, Havenga M, Avezaat CJ, Bout A, Smitt PS . Treatment of malignant gliomas with a replicating adenoviral vector expressing herpes simplex virus-thymidine kinase. Cancer Res 2001; 61: 8743–8750.

    CAS  PubMed  Google Scholar 

  29. Zhu M, Bristol JA, Xie Y, Mina M, Ji H, Forry-Schaudies S et al. Linked tumor-selective virus replication and transgene expression from E3-containing oncolytic adenoviruses. J Virol 2005; 79: 5455–5465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bauzon M, Castro D, Karr M, Hawkins LK, Hermiston TW . Multigene expression from a replicating adenovirus using native viral promoters. Mol Ther 2003; 7: 526–534.

    Article  CAS  PubMed  Google Scholar 

  31. Ganesh S, Gonzalez Edick M, Idamakanti N, Abramova M, Vanroey M, Robinson M et al. Relaxin-expressing, fiber chimeric oncolytic adenovirus prolongs survival of tumor-bearing mice. Cancer Res 2007; 67: 4399–4407.

    Article  CAS  PubMed  Google Scholar 

  32. Jin F, Kretschmer PJ, Hermiston TW . Identification of novel insertion sites in the Ad5 genome that utilize the Ad splicing machinery for therapeutic gene expression. Mol Ther 2005; 12: 1052–1063.

    Article  CAS  PubMed  Google Scholar 

  33. Robinson M, Ge Y, Ko D, Yendluri S, Laflamme G, Hawkins L et al. Comparison of the E3 and L3 regions for arming oncolytic adenoviruses to achieve a high level of tumor-specific transgene expression. Cancer Gene Ther 2008; 15: 9–17.

    Article  CAS  PubMed  Google Scholar 

  34. Sauthoff H, Pipiya T, Heitner S, Chen S, Norman RG, Rom WN et al. Late expression of p53 from a replicating adenovirus improves tumor cell killing and is more tumor cell specific than expression of the adenoviral death protein. Hum Gene Ther 2002; 13: 1859–1871.

    Article  CAS  PubMed  Google Scholar 

  35. Fuerer C, Iggo R . 5-Fluorocytosine increases the toxicity of Wnt-targeting replicating adenoviruses that express cytosine deaminase as a late gene. Gene Therapy 2004; 11: 142–151.

    Article  CAS  PubMed  Google Scholar 

  36. Lukashev AN, Fuerer C, Chen MJ, Searle P, Iggo R . Late expression of nitroreductase in an oncolytic adenovirus sensitizes colon cancer cells to the prodrug CB1954. Hum Gene Ther 2005; 16: 1473–1483.

    Article  CAS  PubMed  Google Scholar 

  37. Rivera AA, Wang M, Suzuki K, Uil TG, Krasnykh V, Curiel DT et al. Mode of transgene expression after fusion to early or late viral genes of a conditionally replicating adenovirus via an optimized internal ribosome entry site in vitro and in vivo. Virology 2004; 320: 121–134.

    Article  CAS  PubMed  Google Scholar 

  38. Ye X, Lu Q, Zhao Y, Ren Z, Ren XW, Qiu QH et al. Conditionally replicative adenovirus vector carrying TRAIL gene for enhanced oncolysis of human hepatocellular carcinoma. Int J Mol Med 2005; 16: 1179–1184.

    CAS  PubMed  Google Scholar 

  39. Wildner O, Morris JC, Vahanian NN, Ford Jr H, Ramsey WJ, Blaese RM . Adenoviral vectors capable of replication improve the efficacy of HSVtk/GCV suicide gene therapy of cancer. Gene Therapy 1999; 6: 57–62.

    Article  CAS  PubMed  Google Scholar 

  40. Sova P, Ren XW, Ni S, Bernt KM, Mi J, Kiviat N et al. A tumor-targeted and conditionally replicating oncolytic adenovirus vector expressing TRAIL for treatment of liver metastases. Mol Ther 2004; 9: 496–509.

    Article  CAS  PubMed  Google Scholar 

  41. Freytag SO, Rogulski KR, Paielli DL, Gilbert JD, Kim JH . A novel three-pronged approach to kill cancer cells selectively: concomitant viral, double suicide gene, and radiotherapy. Hum Gene Ther 1998; 9: 1323–1333.

    Article  CAS  PubMed  Google Scholar 

  42. Zhang ZL, Zou WG, Luo CX, Li BH, Wang JH, Sun LY et al. An armed oncolytic adenovirus system, ZD55-gene, demonstrating potent antitumoral efficacy. Cell Res 2003; 13: 481–489.

    Article  CAS  PubMed  Google Scholar 

  43. van Beusechem VW, van den Doel PB, Grill J, Pinedo HM, Gerritsen WR . Conditionally replicative adenovirus expressing p53 exhibits enhanced oncolytic potency. Cancer Res 2002; 62: 6165–6171.

    CAS  PubMed  Google Scholar 

  44. Zhang YA, Nemunaitis J, Samuel SK, Chen P, Shen Y, Tong AW . Antitumor activity of an oncolytic adenovirus-delivered oncogene small interfering RNA. Cancer Res 2006; 66: 9736–9743.

    Article  CAS  PubMed  Google Scholar 

  45. Wang ZG, Zhao W, Ramachandra M, Seth P . An oncolytic adenovirus expressing soluble transforming growth factor-beta type II receptor for targeting breast cancer: in vitro evaluation. Mol Cancer Ther 2006; 5: 367–373.

    Article  CAS  PubMed  Google Scholar 

  46. Kurihara T, Brough DE, Kovesdi I, Kufe DW . Selectivity of a replication-competent adenovirus for human breast carcinoma cells expressing the MUC1 antigen. J Clin Invest 2000; 106: 763–771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Carette JE, Overmeer RM, Schagen FH, Alemany R, Barski OA, Gerritsen WR et al. Conditionally replicating adenoviruses expressing short hairpin RNAs silence the expression of a target gene in cancer cells. Cancer Res 2004; 64: 2663–2667.

    Article  CAS  PubMed  Google Scholar 

  48. Oosterhoff D, Pinedo HM, Witlox MA, Carette JE, Gerritsen WR, van Beusechem VW . Gene-directed enzyme prodrug therapy with carboxylesterase enhances the anticancer efficacy of the conditionally replicating adenovirus AdDelta24. Gene Therapy 2005; 12: 1011–1018.

    Article  CAS  PubMed  Google Scholar 

  49. Kretschmer PJ, Jin F, Chartier C, Hermiston TW . Development of a transposon-based approach for identifying novel transgene insertion sites within the replicating adenovirus. Mol Ther 2005; 12: 118–127.

    Article  CAS  PubMed  Google Scholar 

  50. Zhou J, Gao Q, Chen G, Huang X, Lu Y, Li K et al. Novel oncolytic adenovirus selectively targets tumor-associated polo-like kinase 1 and tumor cell viability. Clin Cancer Res 2005; 11: 8431–8440.

    Article  CAS  PubMed  Google Scholar 

  51. Gao Q, Zhou J, Huang X, Chen G, Ye F, Lu Y et al. Selective targeting of checkpoint kinase 1 in tumor cells with a novel potent oncolytic adenovirus. Mol Ther 2006; 13: 928–937.

    Article  CAS  PubMed  Google Scholar 

  52. Chen G, Zhou J, Gao Q, Huang X, Li K, Zhuang L et al. Oncolytic adenovirus-mediated transfer of the antisense chk2 selectively inhibits tumor growth in vitro and in vivo. Cancer Gene Ther 2006; 13: 930–939.

    Article  CAS  PubMed  Google Scholar 

  53. Cui Q, Jiang W, Wang Y, Lv C, Luo J, Zhang W et al. Transfer of suppressor of cytokine signaling 3 by an oncolytic adenovirus induces potential antitumor activities in hepatocellular carcinoma. Hepatology 2008; 47: 105–112.

    Article  CAS  PubMed  Google Scholar 

  54. Pei Z, Chu L, Zou W, Zhang Z, Qiu S, Qi R et al. An oncolytic adenoviral vector of Smac increases antitumor activity of TRAIL against HCC in human cells and in mice. Hepatology 2004; 39: 1371–1381.

    Article  CAS  PubMed  Google Scholar 

  55. Qi R, Gu J, Zhang Z, Yang K, Li B, Fan J et al. Potent antitumor efficacy of XAF1 delivered by conditionally replicative adenovirus vector via caspase-independent apoptosis. Cancer Gene Ther 2007; 14: 82–90.

    Article  CAS  PubMed  Google Scholar 

  56. Yang M, Cao X, Yu MC, Gu JF, Shen ZH, Ding M et al. Potent antitumor efficacy of ST13 for colorectal cancer mediated by oncolytic adenovirus via mitochondrial apoptotic cell death. Hum Gene Ther 2008; 19: 343–353.

    Article  CAS  PubMed  Google Scholar 

  57. Chu L, Gu J, Sun L, Qian Q, Qian C, Liu X . Oncolytic adenovirus-mediated shRNA against Apollon inhibits tumor cell growth and enhances antitumor effect of 5-fluorouracil. Gene Therapy 2008; 15: 484–494.

    Article  CAS  PubMed  Google Scholar 

  58. Zhang Y, Gu J, Zhao L, He L, Qian W, Wang J et al. Complete elimination of colorectal tumor xenograft by combined manganese superoxide dismutase with tumor necrosis factor-related apoptosis-inducing ligand gene virotherapy. Cancer Res 2006; 66: 4291–4298.

    Article  CAS  PubMed  Google Scholar 

  59. Zhang Y, Qin X, Zhao L, Wang Y, Liu X, Yao L . Combination of ZD55-MnSOD therapy with 5-FU enhances antitumor efficacy in colorectal cancer. J Cancer Res Clin Oncol 2008; 134: 219–226.

    Article  CAS  PubMed  Google Scholar 

  60. Pan QW, Zhong SY, Liu BS, Liu J, Cai R, Wang YG et al. Enhanced sensitivity of hepatocellular carcinoma cells to chemotherapy with a Smac-armed oncolytic adenovirus. Acta Pharmacol Sin 2007; 28: 1996–2004.

    Article  CAS  PubMed  Google Scholar 

  61. Wildner O, Blaese RM, Morris JC . Therapy of colon cancer with oncolytic adenovirus is enhanced by the addition of herpes simplex virus-thymidine kinase. Cancer Res 1999; 59: 410–413.

    CAS  PubMed  Google Scholar 

  62. Morris JC, Wildner O . Therapy of head and neck squamous cell carcinoma with an oncolytic adenovirus expressing HSV-tk. Mol Ther 2000; 1: 56–62.

    Article  CAS  PubMed  Google Scholar 

  63. Lambright ES, Amin K, Wiewrodt R, Force SD, Lanuti M, Propert KJ et al. Inclusion of the herpes simplex thymidine kinase gene in a replicating adenovirus does not augment antitumor efficacy. Gene Therapy 2001; 8: 946–953.

    Article  CAS  PubMed  Google Scholar 

  64. Wildner O, Morris JC . Therapy of peritoneal carcinomatosis from colon cancer with oncolytic adenoviruses. J Gene Med 2000; 2: 353–360.

    Article  CAS  PubMed  Google Scholar 

  65. Wildner O, Morris JC . The role of the E1B 55 kDa gene product in oncolytic adenoviral vectors expressing herpes simplex virus-tk: assessment of antitumor efficacy and toxicity. Cancer Res 2000; 60: 4167–4174.

    CAS  PubMed  Google Scholar 

  66. Wildner O, Hoffmann D, Jogler C, Uberla K . Comparison of HSV-1 thymidine kinase-dependent and -independent inhibition of replication-competent adenoviral vectors by a panel of drugs. Cancer Gene Ther 2003; 10: 791–802.

    Article  CAS  PubMed  Google Scholar 

  67. Liu Y, Ye T, Maynard J, Akbulut H, Deisseroth A . Engineering conditionally replication-competent adenoviral vectors carrying the cytosine deaminase gene increases the infectivity and therapeutic effect for breast cancer gene therapy. Cancer Gene Ther 2006; 13: 346–356.

    Article  CAS  PubMed  Google Scholar 

  68. Zhan J, Gao Y, Wang W, Shen A, Aspelund A, Young M et al. Tumor-specific intravenous gene delivery using oncolytic adenoviruses. Cancer Gene Ther 2005; 12: 19–25.

    Article  CAS  PubMed  Google Scholar 

  69. Liu Y, Ye T, Sun D, Maynard J, Deisseroth A . Tumor-specific therapeutic effect induced by an oncolytic adenoviral vector containing heat shock protein 70 and prodrug activation genes. Gene Therapy 2006; 13: 1235–1243.

    Article  PubMed  CAS  Google Scholar 

  70. Liu Y, Deisseroth A . Oncolytic adenoviral vector carrying the cytosine deaminase gene for melanoma gene therapy. Cancer Gene Ther 2006; 13: 845–855.

    Article  CAS  PubMed  Google Scholar 

  71. Rogulski KR, Wing MS, Paielli DL, Gilbert JD, Kim JH, Freytag SO . Double suicide gene therapy augments the antitumor activity of a replication-competent lytic adenovirus through enhanced cytotoxicity and radiosensitization. Hum Gene Ther 2000; 11: 67–76.

    Article  CAS  PubMed  Google Scholar 

  72. Freytag SO, Khil M, Stricker H, Peabody J, Menon M, DePeralta-Venturina M et al. Phase I study of replication-competent adenovirus-mediated double suicide gene therapy for the treatment of locally recurrent prostate cancer. Cancer Res 2002; 62: 4968–4976.

    CAS  PubMed  Google Scholar 

  73. Freytag SO, Stricker H, Pegg J, Paielli D, Pradhan DG, Peabody J et al. Phase I study of replication-competent adenovirus-mediated double-suicide gene therapy in combination with conventional-dose three-dimensional conformal radiation therapy for the treatment of newly diagnosed, intermediate- to high-risk prostate cancer. Cancer Res 2003; 63: 7497–7506.

    CAS  PubMed  Google Scholar 

  74. Freytag SO, Stricker H, Peabody J, Pegg J, Paielli D, Movsas B et al. Five-year follow-up of trial of replication-competent adenovirus-mediated suicide gene therapy for treatment of prostate cancer. Mol Ther 2007; 15: 636–642.

    Article  CAS  PubMed  Google Scholar 

  75. Barton KN, Tyson D, Stricker H, Lew YS, Heisey G, Koul S et al. GENIS: gene expression of sodium iodide symporter for noninvasive imaging of gene therapy vectors and quantification of gene expression in vivo. Mol Ther 2003; 8: 508–518.

    Article  CAS  PubMed  Google Scholar 

  76. Barton KN, Paielli D, Zhang Y, Koul S, Brown SL, Lu M et al. Second-generation replication-competent oncolytic adenovirus armed with improved suicide genes and ADP gene demonstrates greater efficacy without increased toxicity. Mol Ther 2006; 13: 347–356.

    Article  CAS  PubMed  Google Scholar 

  77. Freytag SO, Barton KN, Brown SL, Narra V, Zhang Y, Tyson D et al. Replication-competent adenovirus-mediated suicide gene therapy with radiation in a preclinical model of pancreatic cancer. Mol Ther 2007; 15: 1600–1606.

    Article  CAS  PubMed  Google Scholar 

  78. Freytag SO, Movsas B, Aref I, Stricker H, Peabody J, Pegg J et al. Phase I trial of replication-competent adenovirus-mediated suicide gene therapy combined with IMRT for prostate cancer. Mol Ther 2007; 15: 1016–1023.

    Article  CAS  PubMed  Google Scholar 

  79. Seo E, Abei M, Wakayama M, Fukuda K, Ugai H, Murata T et al. Effective gene therapy of biliary tract cancers by a conditionally replicative adenovirus expressing uracil phosphoribosyltransferase: significance of timing of 5-fluorouracil administration. Cancer Res 2005; 65: 546–552.

    Article  CAS  PubMed  Google Scholar 

  80. Bernt KM, Steinwaerder DS, Ni S, Li ZY, Roffler SR, Lieber A . Enzyme-activated prodrug therapy enhances tumor-specific replication of adenovirus vectors. Cancer Res 2002; 62: 6089–6098.

    CAS  PubMed  Google Scholar 

  81. Schepelmann S, Hallenbeck P, Ogilvie LM, Hedley D, Friedlos F, Martin J et al. Systemic gene-directed enzyme prodrug therapy of hepatocellular carcinoma using a targeted adenovirus armed with carboxypeptidase G2 . Cancer Res 2005; 65: 5003–5008.

    Article  CAS  PubMed  Google Scholar 

  82. Schepelmann S, Ogilvie LM, Hedley D, Friedlos F, Martin J, Scanlon I et al. Suicide gene therapy of human colon carcinoma xenografts using an armed oncolytic adenovirus expressing carboxypeptidase G2 . Cancer Res 2007; 67: 4949–4955.

    Article  CAS  PubMed  Google Scholar 

  83. Chen MJ, Green NK, Reynolds GM, Flavell JR, Mautner V, Kerr DJ et al. Enhanced efficacy of Escherichia coli nitroreductase/CB1954 prodrug activation gene therapy using an E1B-55K-deleted oncolytic adenovirus vector. Gene Therapy 2004; 11: 1126–1136.

    Article  CAS  PubMed  Google Scholar 

  84. Singleton DC, Li D, Bai SY, Syddall SP, Smaill JB, Shen Y et al. The nitroreductase prodrug SN 28343 enhances the potency of systemically administered armed oncolytic adenovirus ONYX-411(NTR). Cancer Gene Ther 2007; 14: 953–967.

    Article  CAS  PubMed  Google Scholar 

  85. Stubdal H, Perin N, Lemmon M, Holman P, Bauzon M, Potter PM et al. A prodrug strategy using ONYX-015-based replicating adenoviruses to deliver rabbit carboxylesterase to tumor cells for conversion of CPT-11 to SN-38. Cancer Res 2003; 63: 6900–6908.

    CAS  PubMed  Google Scholar 

  86. Kuppuswamy M, Spencer JF, Doronin K, Tollefson AE, Wold WS, Toth K . Oncolytic adenovirus that overproduces ADP and replicates selectively in tumors due to hTERT promoter-regulated E4 gene expression. Gene Therapy 2005; 12: 1608–1617.

    Article  CAS  PubMed  Google Scholar 

  87. Toth K, Djeha H, Ying B, Tollefson AE, Kuppuswamy M, Doronin K et al. An oncolytic adenovirus vector combining enhanced cell-to-cell spreading, mediated by the ADP cytolytic protein, with selective replication in cancer cells with deregulated wnt signaling. Cancer Res 2004; 64: 3638–3644.

    Article  CAS  PubMed  Google Scholar 

  88. Toth K, Tarakanova V, Doronin K, Ward P, Kuppuswamy M, Locke JE et al. Radiation increases the activity of oncolytic adenovirus cancer gene therapy vectors that overexpress the ADP (E3-11.6K) protein. Cancer Gene Ther 2003; 10: 193–200.

    Article  CAS  PubMed  Google Scholar 

  89. Yun CO, Kim E, Koo T, Kim H, Lee YS, Kim JH . ADP-overexpressing adenovirus elicits enhanced cytopathic effect by induction of apoptosis. Cancer Gene Ther 2005; 12: 61–71.

    Article  CAS  PubMed  Google Scholar 

  90. Geoerger B, Vassal G, Opolon P, Dirven CM, Morizet J, Laudani L et al. Oncolytic activity of p53-expressing conditionally replicative adenovirus AdDelta24-p53 against human malignant glioma. Cancer Res 2004; 64: 5753–5759.

    Article  CAS  PubMed  Google Scholar 

  91. Geoerger B, van Beusechem VW, Opolon P, Morizet J, Laudani L, Lecluse Y et al. Expression of p53, or targeting towards EGFR, enhances the oncolytic potency of conditionally replicative adenovirus against neuroblastoma. J Gene Med 2005; 7: 584–594.

    Article  CAS  PubMed  Google Scholar 

  92. Idema S, Lamfers ML, van Beusechem VW, Noske DP, Heukelom S, Moeniralm S et al. AdDelta24 and the p53-expressing variant AdDelta24-p53 achieve potent anti-tumor activity in glioma when combined with radiotherapy. J Gene Med 2007; 9: 1046–1056.

    Article  CAS  PubMed  Google Scholar 

  93. van Beusechem VW, van den Doel PB, Gerritsen WR . Conditionally replicative adenovirus expressing degradation-resistant p53 for enhanced oncolysis of human cancer cells overexpressing murine double minute 2. Mol Cancer Ther 2005; 4: 1013–1018.

    Article  CAS  PubMed  Google Scholar 

  94. Heideman DA, Steenbergen RD, van der Torre J, Scheffner M, Alemany R, Gerritsen WR et al. Oncolytic adenovirus expressing a p53 variant resistant to degradation by HPV E6 protein exhibits potent and selective replication in cervical cancer. Mol Ther 2005; 12: 1083–1090.

    Article  CAS  PubMed  Google Scholar 

  95. Sauthoff H, Pipiya T, Chen S, Heitner S, Cheng J, Huang YQ et al. Modification of the p53 transgene of a replication-competent adenovirus prevents mdm2- and E1b-55kD-mediated degradation of p53. Cancer Gene Ther 2006; 13: 686–695.

    Article  CAS  PubMed  Google Scholar 

  96. Graat HC, Carette JE, Schagen FH, Vassilev LT, Gerritsen WR, Kaspers GJ et al. Enhanced tumor cell kill by combined treatment with a small-molecule antagonist of mouse double minute 2 and adenoviruses encoding p53. Mol Cancer Ther 2007; 6: 1552–1561.

    Article  CAS  PubMed  Google Scholar 

  97. Bouvet M, Ellis LM, Nishizaki M, Fujiwara T, Liu W, Bucana CD et al. Adenovirus-mediated wild-type p53 gene transfer down-regulates vascular endothelial growth factor expression and inhibits angiogenesis in human colon cancer. Cancer Res 1998; 58: 2288–2292.

    CAS  PubMed  Google Scholar 

  98. Nishizaki M, Fujiwara T, Tanida T, Hizuta A, Nishimori H, Tokino T et al. Recombinant adenovirus expressing wild-type p53 is antiangiogenic: a proposed mechanism for bystander effect. Clin Cancer Res 1999; 5: 1015–1023.

    CAS  PubMed  Google Scholar 

  99. Dameron KM, Volpert OV, Tainsky MA, Bouck N . The p53 tumor suppressor gene inhibits angiogenesis by stimulating the production of thrombospondin. Cold Spring Harb Symp Quant Biol 1994; 59: 483–489.

    Article  CAS  PubMed  Google Scholar 

  100. Dewar RL, Natarajan V, Vasudevachari MB, Salzman NP . Synthesis and processing of human immunodeficiency virus type 1 envelope proteins encoded by a recombinant human adenovirus. J Virol 1989; 63: 129–136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Li H, Haviv YS, Derdeyn CA, Lam J, Coolidge C, Hunter E et al. Human immunodeficiency virus type 1-mediated syncytium formation is compatible with adenovirus replication and facilitates efficient dispersion of viral gene products and de novo-synthesized virus particles. Hum Gene Ther 2001; 12: 2155–2165.

    Article  CAS  PubMed  Google Scholar 

  102. Wohlfahrt ME, Beard BC, Lieber A, Kiem HP . A capsid-modified, conditionally replicating oncolytic adenovirus vector expressing TRAIL leads to enhanced cancer cell killing in human glioblastoma models. Cancer Res 2007; 67: 8783–8790.

    Article  CAS  PubMed  Google Scholar 

  103. Bernt KM, Ni S, Tieu AT, Lieber A . Assessment of a combined, adenovirus-mediated oncolytic and immunostimulatory tumor therapy. Cancer Res 2005; 65: 4343–4352.

    Article  CAS  PubMed  Google Scholar 

  104. Pan Q, Liu B, Liu J, Cai R, Wang Y, Qian C . Synergistic induction of tumor cell death by combining cisplatin with an oncolytic adenovirus carrying TRAIL. Mol Cell Biochem 2007; 304: 315–323.

    Article  CAS  PubMed  Google Scholar 

  105. Qiu S, Ruan H, Pei Z, Hu B, Lan P, Wang J et al. Combination of targeting gene-viro therapy with 5-FU enhances antitumor efficacy in malignant colorectal carcinoma. J Interferon Cytokine Res 2004; 24: 219–230.

    Article  CAS  PubMed  Google Scholar 

  106. Chu L, Gu J, He Z, Xiao T, Liu X . Adenoviral vector expressing CYLD augments antitumor activity of TRAIL by suppression of NF-kappaB survival signaling in hepatocellular carcinoma. Cancer Biol Ther 2006; 5: 615–622.

    Article  CAS  PubMed  Google Scholar 

  107. Liu XY, Qiu SB, Zou WG, Pei ZF, Gu JF, Luo CX et al. Effective gene-virotherapy for complete eradication of tumor mediated by the combination of hTRAIL (TNFSF10) and plasminogen k5. Mol Ther 2005; 11: 531–541.

    Article  CAS  PubMed  Google Scholar 

  108. Zhao L, Dong A, Gu J, Liu Z, Zhang Y, Zhang W et al. The antitumor activity of TRAIL and IL-24 with replicating oncolytic adenovirus in colorectal cancer. Cancer Gene Ther 2006; 13: 1011–1022.

    Article  CAS  PubMed  Google Scholar 

  109. Pan Q, Liu B, Liu J, Cai R, Liu X, Qian C . Synergistic antitumor activity of XIAP-shRNA and TRAIL expressed by oncolytic adenoviruses in experimental HCC. Acta Oncol 2008; 47: 135–144.

    Article  CAS  PubMed  Google Scholar 

  110. Liotta LA, Kohn EC . The microenvironment of the tumour-host interface. Nature 2001; 411: 375–379.

    Article  CAS  PubMed  Google Scholar 

  111. Lamfers ML, Gianni D, Tung CH, Idema S, Schagen FH, Carette JE et al. Tissue inhibitor of metalloproteinase-3 expression from an oncolytic adenovirus inhibits matrix metalloproteinase activity in vivo without affecting antitumor efficacy in malignant glioma. Cancer Res 2005; 65: 9398–9405.

    Article  CAS  PubMed  Google Scholar 

  112. Kim JH, Lee YS, Kim H, Huang JH, Yoon AR, Yun CO . Relaxin expression from tumor-targeting adenoviruses and its intratumoral spread, apoptosis induction, and efficacy. J Natl Cancer Inst 2006; 98: 1482–1493.

    Article  CAS  PubMed  Google Scholar 

  113. Li GC, Yang JM, Nie MM, Su CG, Sun LC, Qian YZ et al. Potent antitumoral effects of a novel gene-viral therapeutic system CNHK300-mEndostatin in hepatocellular carcinoma. Chin Med J (Engl) 2005; 118: 179–185.

    CAS  Google Scholar 

  114. Zhang Q, Nie M, Sham J, Su C, Xue H, Chua D et al. Effective gene-viral therapy for telomerase-positive cancers by selective replicative-competent adenovirus combining with endostatin gene. Cancer Res 2004; 64: 5390–5397.

    Article  CAS  PubMed  Google Scholar 

  115. Yoo JY, Kim JH, Kwon YG, Kim EC, Kim NK, Choi HJ et al. VEGF-specific short hairpin RNA-expressing oncolytic adenovirus elicits potent inhibition of angiogenesis and tumor growth. Mol Ther 2007; 15: 295–302.

    Article  CAS  PubMed  Google Scholar 

  116. Yoo JY, Kim JH, Kim J, Huang JH, Zhang SN, Kang YA et al. Short hairpin RNA-expressing oncolytic adenovirus-mediated inhibition of IL-8: effects on antiangiogenesis and tumor growth inhibition. Gene Therapy 2008; 15: 635–651.

    Article  CAS  PubMed  Google Scholar 

  117. Kang YA, Shin HC, Yoo JY, Kim JH, Kim JS, Yun CO . Novel cancer antiangiotherapy using the VEGF promoter-targeted artificial zinc-finger protein and oncolytic adenovirus. Mol Ther 2008; 16: 1033–1040.

    Article  CAS  PubMed  Google Scholar 

  118. Zhang Z, Zou W, Wang J, Gu J, Dang Y, Li B et al. Suppression of tumor growth by oncolytic adenovirus-mediated delivery of an antiangiogenic gene, soluble Flt-1. Mol Ther 2005; 11: 553–562.

    Article  CAS  PubMed  Google Scholar 

  119. Bristol JA, Zhu M, Ji H, Mina M, Xie Y, Clarke L et al. In vitro and in vivo activities of an oncolytic adenoviral vector designed to express GM-CSF. Mol Ther 2003; 7: 755–764.

    Article  CAS  PubMed  Google Scholar 

  120. Ramesh N, Ge Y, Ennist DL, Zhu M, Mina M, Ganesh S et al. CG0070, a conditionally replicating granulocyte macrophage colony-stimulating factor—armed oncolytic adenovirus for the treatment of bladder cancer. Clin Cancer Res 2006; 12: 305–313.

    Article  CAS  PubMed  Google Scholar 

  121. Choi KJ, Kim JH, Lee YS, Kim J, Suh BS, Kim H et al. Concurrent delivery of GM-CSF and B7-1 using an oncolytic adenovirus elicits potent antitumor effect. Gene Therapy 2006; 13: 1010–1020.

    Article  CAS  PubMed  Google Scholar 

  122. Sarkar D, Su ZZ, Vozhilla N, Park ES, Randolph A, Valerie K et al. Targeted virus replication plus immunotherapy eradicates primary and distant pancreatic tumors in nude mice. Cancer Res 2005; 65: 9056–9063.

    Article  CAS  PubMed  Google Scholar 

  123. Su C, Peng L, Sham J, Wang X, Zhang Q, Chua D et al. Immune gene-viral therapy with triplex efficacy mediated by oncolytic adenovirus carrying an interferon-gamma gene yields efficient antitumor activity in immunodeficient and immunocompetent mice. Mol Ther 2006; 13: 918–927.

    Article  CAS  PubMed  Google Scholar 

  124. Shashkova EV, Spencer JF, Wold WS, Doronin K . Targeting interferon-alpha increases antitumor efficacy and reduces hepatotoxicity of E1A-mutated spread-enhanced oncolytic adenovirus. Mol Ther 2007; 15: 598–607.

    Article  CAS  PubMed  Google Scholar 

  125. Shashkova EV, Kuppuswamy MN, Wold WS, Doronin K . Anticancer activity of oncolytic adenovirus vector armed with IFN-alpha and ADP is enhanced by pharmacologically controlled expression of TRAIL. Cancer Gene Ther 2008; 15: 61–72.

    Article  CAS  PubMed  Google Scholar 

  126. Post DE, Sandberg EM, Kyle MM, Devi NS, Brat DJ, Xu Z et al. Targeted cancer gene therapy using a hypoxia inducible factor dependent oncolytic adenovirus armed with interleukin-4. Cancer Res 2007; 67: 6872–6881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Lee YS, Kim JH, Choi KJ, Choi IK, Kim H, Cho S et al. Enhanced antitumor effect of oncolytic adenovirus expressing interleukin-12 and B7-1 in an immunocompetent murine model. Clin Cancer Res 2006; 12: 5859–5868.

    Article  CAS  PubMed  Google Scholar 

  128. Sarkar D, Su ZZ, Vozhilla N, Park ES, Gupta P, Fisher PB . Dual cancer-specific targeting strategy cures primary and distant breast carcinomas in nude mice. Proc Natl Acad Sci USA 2005; 102: 14034–14039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Sarkar D, Lebedeva IV, Su ZZ, Park ES, Chatman L, Vozhilla N et al. Eradication of therapy-resistant human prostate tumors using a cancer terminator virus. Cancer Res 2007; 67: 5434–5442.

    Article  CAS  PubMed  Google Scholar 

  130. Qian W, Liu J, Tong Y, Yan S, Yang C, Yang M et al. Enhanced antitumor activity by a selective conditionally replicating adenovirus combining with MDA-7/interleukin-24 for B-lymphoblastic leukemia via induction of apoptosis. Leukemia 2008; 22: 361–369.

    Article  CAS  PubMed  Google Scholar 

  131. Luo J, Xia Q, Zhang R, Lv C, Zhang W, Wang Y et al. Treatment of cancer with a novel dual-targeted conditionally replicative adenovirus armed with mda-7/IL-24 gene. Clin Cancer Res 2008; 14: 2450–2457.

    Article  CAS  PubMed  Google Scholar 

  132. Huang XF, Ren W, Rollins L, Pittman P, Shah M, Shen L et al. A broadly applicable, personalized heat shock protein-mediated oncolytic tumor vaccine. Cancer Res 2003; 63: 7321–7329.

    CAS  PubMed  Google Scholar 

  133. Di Paolo NC, Tuve S, Ni S, Hellstrom KE, Hellstrom I, Lieber A . Effect of adenovirus-mediated heat shock protein expression and oncolysis in combination with low-dose cyclophosphamide treatment on antitumor immune responses. Cancer Res 2006; 66: 960–969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Waddington SN, McVey JH, Bhella D, Parker AL, Barker K, Atoda H et al. Adenovirus serotype 5 hexon mediates liver gene transfer. Cell 2008; 132: 397–409.

    Article  CAS  PubMed  Google Scholar 

  135. Kalyuzhniy O, Di Paolo NC, Silvestry M, Hofherr SE, Barry MA, Stewart PL et al. Adenovirus serotype 5 hexon is critical for virus infection of hepatocytes in vivo. Proc Natl Acad Sci USA 2008; 105: 5483–5488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Douglas JT, Kim M, Sumerel LA, Carey DE, Curiel DT . Efficient oncolysis by a replicating adenovirus (ad) in vivo is critically dependent on tumor expression of primary ad receptors. Cancer Res 2001; 61: 813–817.

    CAS  PubMed  Google Scholar 

  137. Krasnykh V, Dmitriev I, Navarro JG, Belousova N, Kashentseva E, Xiang J et al. Advanced generation adenoviral vectors possess augmented gene transfer efficiency based upon coxsackie adenovirus receptor-independent cellular entry capacity. Cancer Res 2000; 60: 6784–6787.

    CAS  PubMed  Google Scholar 

  138. Stoff-Khalili MA, Rivera AA, Mathis JM, Banerjee NS, Moon AS, Hess A et al. Mesenchymal stem cells as a vehicle for targeted delivery of CRAds to lung metastases of breast carcinoma. Breast Cancer Res Treat 2007; 105: 157–167.

    Article  PubMed  Google Scholar 

  139. Guo ZS, Thorne SH, Bartlett DL . Oncolytic virotherapy: molecular targets in tumor-selective replication and carrier cell-mediated delivery of oncolytic viruses. Biochim Biophys Acta 2008; 1785: 217–231.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Bangari DS, Mittal SK . Current strategies and future directions for eluding adenoviral vector immunity. Curr Gene Ther 2006; 6: 215–226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Toth K, Spencer JF, Tollefson AE, Kuppuswamy M, Doronin K, Lichtenstein DL et al. Cotton rat tumor model for the evaluation of oncolytic adenoviruses. Hum Gene Ther 2005; 16: 139–146.

    Article  CAS  PubMed  Google Scholar 

  142. Steel JC, Morrison BJ, Mannan P, Abu-Asab MS, Wildner O, Miles BK et al. Immunocompetent syngeneic cotton rat tumor models for the assessment of replication-competent oncolytic adenovirus. Virology 2007; 369: 131–142.

    Article  CAS  PubMed  Google Scholar 

  143. Thomas MA, Spencer JF, La Regina MC, Dhar D, Tollefson AE, Toth K et al. Syrian hamster as a permissive immunocompetent animal model for the study of oncolytic adenovirus vectors. Cancer Res 2006; 66: 1270–1276.

    Article  CAS  PubMed  Google Scholar 

  144. Hemminki A, Wang M, Hakkarainen T, Desmond RA, Wahlfors J, Curiel DT . Production of an EGFR targeting molecule from a conditionally replicating adenovirus impairs its oncolytic potential. Cancer Gene Ther 2003; 10: 583–588.

    Article  CAS  PubMed  Google Scholar 

  145. Kanerva A, Zinn KR, Peng KW, Ranki T, Kangasniemi L, Chaudhuri TR et al. Noninvasive dual modality in vivo monitoring of the persistence and potency of a tumor targeted conditionally replicating adenovirus. Gene Therapy 2005; 12: 87–94.

    Article  CAS  PubMed  Google Scholar 

  146. Rajecki M, Kanerva A, Stenman UH, Tenhunen M, Kangasniemi L, Sarkioja M et al. Treatment of prostate cancer with Ad5/3Delta24hCG allows non-invasive detection of the magnitude and persistence of virus replication in vivo. Mol Cancer Ther 2007; 6: 742–751.

    Article  CAS  PubMed  Google Scholar 

  147. Lamfers ML, Fulci G, Gianni D, Tang Y, Kurozumi K, Kaur B et al. Cyclophosphamide increases transgene expression mediated by an oncolytic adenovirus in glioma-bearing mice monitored by bioluminescence imaging. Mol Ther 2006; 14: 779–788.

    Article  CAS  PubMed  Google Scholar 

  148. Leyton J, Lockley M, Aerts JL, Baird SK, Aboagye EO, Lemoine NR et al. Quantifying the activity of adenoviral E1A CR2 deletion mutants using renilla luciferase bioluminescence and 3′-deoxy-3′-[18F]fluorothymidine positron emission tomography imaging. Cancer Res 2006; 66: 9178–9185.

    Article  CAS  PubMed  Google Scholar 

  149. Mocanu JD, Yip KW, Alajez NM, Shi W, Li JH, Lunt SJ et al. Imaging the modulation of adenoviral kinetics and biodistribution for cancer gene therapy. Mol Ther 2007; 15: 921–929.

    Article  CAS  PubMed  Google Scholar 

  150. Guse K, Dias JD, Bauerschmitz GJ, Hakkarainen T, Aavik E, Ranki T et al. Luciferase imaging for evaluation of oncolytic adenovirus replication in vivo. Gene Therapy 2007; 14: 902–911.

    Article  CAS  PubMed  Google Scholar 

  151. Barton KN, Xia X, Yan H, Stricker H, Heisey G, Yin FF et al. A quantitative method for measuring gene expression magnitude and volume delivered by gene therapy vectors. Mol Ther 2004; 9: 625–631.

    Article  CAS  PubMed  Google Scholar 

  152. Merron A, Peerlinck I, Martin-Duque P, Burnet J, Quintanilla M, Mather S et al. SPECT/CT imaging of oncolytic adenovirus propagation in tumours in vivo using the Na/I symporter as a reporter gene. Gene Therapy 2007; 14: 1731–1738.

    Article  CAS  PubMed  Google Scholar 

  153. Davis JJ, Wang L, Dong F, Zhang L, Guo W, Teraishi F et al. Oncolysis and suppression of tumor growth by a GFP-expressing oncolytic adenovirus controlled by an hTERT and CMV hybrid promoter. Cancer Gene Ther 2006; 13: 720–723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Fujiwara T, Kagawa S, Kishimoto H, Endo Y, Hioki M, Ikeda Y et al. Enhanced antitumor efficacy of telomerase-selective oncolytic adenoviral agent OBP-401 with docetaxel: preclinical evaluation of chemovirotherapy. Int J Cancer 2006; 119: 432–440.

    Article  CAS  PubMed  Google Scholar 

  155. Ono HA, Le LP, Davydova JG, Gavrikova T, Yamamoto M . Noninvasive visualization of adenovirus replication with a fluorescent reporter in the E3 region. Cancer Res 2005; 65: 10154–10158.

    Article  CAS  PubMed  Google Scholar 

  156. Li X, Zhang YP, Kim HS, Bae KH, Stantz KM, Lee SJ et al. Gene therapy for prostate cancer by controlling adenovirus E1a and E4 gene expression with PSES enhancer. Cancer Res 2005; 65: 1941–1951.

    Article  CAS  PubMed  Google Scholar 

  157. Ito H, Aoki H, Kuhnel F, Kondo Y, Kubicka S, Wirth T et al. Autophagic cell death of malignant glioma cells induced by a conditionally replicating adenovirus. J Natl Cancer Inst 2006; 98: 625–636.

    Article  CAS  PubMed  Google Scholar 

  158. Huang Q, Zhang X, Wang H, Yan B, Kirkpatrick J, Dewhrist MW et al. A novel conditionally replicative adenovirus vector targeting telomerase-positive tumor cells. Clin Cancer Res 2004; 10: 1439–1445.

    Article  CAS  PubMed  Google Scholar 

  159. Hakkarainen T, Hemminki A, Curiel DT, Wahlfors J . A conditionally replicative adenovirus that codes for a TK–GFP fusion protein (Ad5Delta24TK–GFP) for evaluation of the potency of oncolytic virotherapy combined with molecular chemotherapy. Int J Mol Med 2006; 18: 751–759.

    CAS  PubMed  Google Scholar 

  160. Raki M, Hakkarainen T, Bauerschmitz GJ, Sarkioja M, Desmond RA, Kanerva A et al. Utility of TK/GCV in the context of highly effective oncolysis mediated by a serotype 3 receptor targeted oncolytic adenovirus. Gene Therapy 2007; 14: 1380–1388.

    Article  CAS  PubMed  Google Scholar 

  161. Le LP, Everts M, Dmitriev IP, Davydova JG, Yamamoto M, Curiel DT . Fluorescently labeled adenovirus with pIX-EGFP for vector detection. Mol Imaging 2004; 3: 105–116.

    Article  CAS  PubMed  Google Scholar 

  162. Le LP, Li J, Ternovoi VV, Siegal GP, Curiel DT . Fluorescently tagged canine adenovirus via modification with protein IX-enhanced green fluorescent protein. J Gen Virol 2005; 86: 3201–3208.

    Article  CAS  PubMed  Google Scholar 

  163. Le LP, Le HN, Dmitriev IP, Davydova JG, Gavrikova T, Yamamoto S et al. Dynamic monitoring of oncolytic adenovirus in vivo by genetic capsid labeling. J Natl Cancer Inst 2006; 98: 203–214.

    Article  CAS  PubMed  Google Scholar 

  164. Li J, Le L, Sibley DA, Mathis JM, Curiel DT . Genetic incorporation of HSV-1 thymidine kinase into the adenovirus protein IX for functional display on the virion. Virology 2005; 338: 247–258.

    Article  CAS  PubMed  Google Scholar 

  165. Matthews QL, Sibley DA, Wu H, Li J, Stoff-Khalili MA, Waehler R et al. Genetic incorporation of a herpes simplex virus type 1 thymidine kinase and firefly luciferase fusion into the adenovirus protein IX for functional display on the virion. Mol Imaging 2006; 5: 510–519.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by NIH grants R01 CA108585, R01 CA083821, R01 CA111569 and T32 CA075930.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J T Douglas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cody, J., Douglas, J. Armed replicating adenoviruses for cancer virotherapy. Cancer Gene Ther 16, 473–488 (2009). https://doi.org/10.1038/cgt.2009.3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2009.3

Keywords

This article is cited by

Search

Quick links