Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Development of gene therapy in association with clinically used cytotoxic deoxynucleoside analogues

Abstract

The clinical use of cytotoxic deoxynucleoside analogues is often limited by resistance mechanisms due to enzymatic deficiency, or high toxicity in nontumor tissues. To improve the use of these drugs, gene therapy approaches have been proposed and studied, associating clinically used deoxynucleoside analogues such as araC and gemcitabine and suicide genes or myeloprotective genes. In this review, we provide an update of recent results in this area, with particular emphasis on human deoxycytidine kinase, the deoxyribonucleoside kinase from Drosophila melanogaster, purine nucleoside phosphorylase from Escherichia coli, and human cytidine deaminase. Data from literature clearly show the feasibility of these systems, and clinical trials are warranted to conclude on their use in the treatment of cancer patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Jordheim LP, Dumontet C . Review of recent studies on resistance to cytotoxic deoxynucleoside analogues. Biochim Biophys Acta 2007; 1776: 138–159.

    CAS  PubMed  Google Scholar 

  2. Greco O, Dachs GU . Gene directed enzyme/prodrug therapy of cancer: historical appraisal and future prospectives. J Cell Physiol 2001; 187: 22–36.

    CAS  PubMed  Google Scholar 

  3. Fillat C, Carrio M, Cascante A, Sangro B . Suicide gene therapy mediated by the herpes simplex virus thymidine kinase gene/ganciclovir system: fifteen years of application. Curr Gene Ther 2003; 3: 13–26.

    CAS  PubMed  Google Scholar 

  4. Yazawa K, Fisher WE, Brunicardi FC . Current progress in suicide gene therapy for cancer. World J Surg 2002; 26: 783–789.

    PubMed  Google Scholar 

  5. Chottiner EG, Shewach DS, Datta NS, Ashcraft E, Gribbin D, Ginsburg D et al. Cloning and expression of human deoxycytidine kinase cDNA. Proc Natl Acad Sci USA 1991; 88: 1531–1535.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Hapke DM, Stegmann AP, Mitchell BS . Retroviral transfer of deoxycytidine kinase into tumor cell lines enhances nucleoside toxicity. Cancer Res 1996; 56: 2343–2347.

    CAS  PubMed  Google Scholar 

  7. Manome Y, Wen PY, Dong Y, Tanaka T, Mitchell BS, Kufe DW et al. Viral vector transduction of the human deoxycytidine kinase cDNA sensitizes glioma cells to the cytotoxic effects of cytosine arabinoside in vitro and in vivo. Nat Med 1996; 2: 567–573.

    CAS  PubMed  Google Scholar 

  8. Kojima H, Iida M, Miyazaki H, Koga T, Moriyama H, Manome Y . Enhancement of cytarabine sensitivity in squamous cell carcinoma cell line transfected with deoxycytidine kinase. Arch Otolaryngol Head Neck Surg 2002; 128: 708–713.

    PubMed  Google Scholar 

  9. Beausejour CM, Gagnon J, Primeau M, Momparler RL . Cytotoxic activity of 2′,2′-difluorodeoxycytidine, 5-aza-2′-deoxycytidine and cytosine arabinoside in cells transduced with deoxycytidine kinase gene. Biochem Biophys Res Commun 2002; 293: 1478–1484.

    PubMed  Google Scholar 

  10. Blackstock AW, Lightfoot H, Case LD, Tepper JE, Mukherji SK, Mitchell BS et al. Tumor uptake and elimination of 2′,2′-difluoro-2′-deoxycytidine (gemcitabine) after deoxycytidine kinase gene transfer: correlation with in vivo tumor response. Clin Cancer Res 2001; 7: 3263–3268.

    CAS  PubMed  Google Scholar 

  11. Stegmann AP, Honders WH, Willemze R, Ruiz van Haperen VW, Landegent JE . Transfection of wild-type deoxycytidine kinase (dck) cDNA into an AraC- and DAC-resistant rat leukemic cell line of clonal origin fully restores drug sensitivity. Blood 1995; 85: 1188–1194.

    CAS  PubMed  Google Scholar 

  12. Johansson M, Brismar S, Karlsson A . Human deoxycytidine kinase is located in the cell nucleus. Proc Natl Acad Sci USA 1997; 94: 11941–11945.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Sanda A, Zhu C, Johansson M, Karlsson A . Bystander effects of nucleoside analogs phosphorylated in the cytosol or mitochondria. Biochem Biophys Res Commun 2001; 287: 1163–1166.

    CAS  PubMed  Google Scholar 

  14. Zhu C, Johansson M, Karlsson A . The subcellular location of nucleoside analog phosphorylation is a determinant of synergistic effects of hydroxyurea. Biochem Biophys Res Commun 2000; 276: 179–182.

    CAS  PubMed  Google Scholar 

  15. Vernejoul F, Ghenassia L, Souque A, Lulka H, Drocourt D, Cordelier P et al. Gene therapy based on gemcitabine chemosensitization suppresses pancreatic tumor growth. Mol Ther 2006; 14: 758–767.

    CAS  PubMed  Google Scholar 

  16. Szatmari T, Huszty G, Desaknai S, Spasokoukotskaja T, Sasvari-Szekely M, Staub M et al. Adenoviral vector transduction of the human deoxycytidine kinase gene enhances the cytotoxic and radiosensitizing effect of gemcitabine on experimental gliomas. Cancer Gene Ther 2008; 15: 154–164.

    CAS  PubMed  Google Scholar 

  17. Zhang Y, Secrist III JA, Ealick SE . The structure of human deoxycytidine kinase in complex with clofarabine reveals key interactions for prodrug activation. Acta Crystallogr D Biol Crystallogr 2006; 62: 133–139.

    PubMed  Google Scholar 

  18. Sabini E, Hazra S, Konrad M, Burley SK, Lavie A . Structural basis for activation of the therapeutic L-nucleoside analogs 3TC and troxacitabine by human deoxycytidine kinase. Nucleic Acids Res 2007; 35: 186–192.

    CAS  PubMed  Google Scholar 

  19. Sabini E, Ort S, Monnerjahn C, Konrad M, Lavie A . Structure of human dCK suggests strategies to improve anticancer and antiviral therapy. Nat Struct Biol 2003; 10: 513–519.

    CAS  PubMed  Google Scholar 

  20. Munch-Petersen B, Piskur J, Sondergaard L . Four deoxynucleoside kinase activities from Drosophila melanogaster are contained within a single monomeric enzyme, a new multifunctional deoxynucleoside kinase. J Biol Chem 1998; 273: 3926–3931.

    CAS  PubMed  Google Scholar 

  21. Johansson M, van Rompay AR, Degreve B, Balzarini J, Karlsson A . Cloning and characterization of the multisubstrate deoxyribonucleoside kinase of Drosophila melanogaster. J Biol Chem 1999; 274: 23814–23819.

    CAS  PubMed  Google Scholar 

  22. Zheng X, Johansson M, Karlsson A . Retroviral transduction of cancer cell lines with the gene encoding Drosophila melanogaster multisubstrate deoxyribonucleoside kinase. J Biol Chem 2000; 275: 39125–39129.

    CAS  PubMed  Google Scholar 

  23. Kamiya H, Ochiai H, Harashima H, Ito M, Matsuda A . Transient expression of Drosophila melanogaster deoxynucleoside kinase gene enhances cytotoxicity of nucleoside analogs. Nucleosides Nucleotides Nucleic Acids 2006; 25: 553–560.

    CAS  PubMed  Google Scholar 

  24. Zheng X, Johansson M, Karlsson A . Nucleoside analog cytotoxicity and bystander cell killing of cancer cells expressing Drosophila melanogaster deoxyribonucleoside kinase in the nucleus or cytosol. Biochem Biophys Res Commun 2001; 289: 229–233.

    CAS  PubMed  Google Scholar 

  25. Zheng X, Johansson M, Karlsson A . Bystander effects of cancer cell lines transduced with the multisubstrate deoxyribonucleoside kinase of Drosophila melanogaster and synergistic enhancement by hydroxyurea. Mol Pharmacol 2001; 60: 262–266.

    CAS  PubMed  Google Scholar 

  26. Jordheim LP, Galmarini CM, Dumontet C . Gemcitabine resistance due to deoxycytidine kinase deficiency can be reverted by fruitfly deoxynucleoside kinase, DmdNK, in human uterine sarcoma cells. Cancer Chemother Pharmacol 2006; 58: 547–554.

    CAS  PubMed  Google Scholar 

  27. Tiberghien P, Ferrand C, Lioure B, Milpied N, Angonin R, Deconinck E et al. Administration of herpes simplex-thymidine kinase-expressing donor T cells with a T-cell-depleted allogeneic marrow graft. Blood 2001; 97: 63–72.

    CAS  PubMed  Google Scholar 

  28. Verzeletti S, Bonini C, Marktel S, Nobili N, Ciceri F, Traversari C et al. Herpes simplex virus thymidine kinase gene transfer for controlled graft-versus-host disease and graft-versus-leukemia: clinical follow-up and improved new vectors. Hum Gene Ther 1998; 9: 2243–2251.

    CAS  PubMed  Google Scholar 

  29. Bonini C, Ferrari G, Verzeletti S, Servida P, Zappone E, Ruggieri L et al. HSV-TK gene transfer into donor lymphocytes for control of allogeneic graft-versus-leukemia. Science 1997; 276: 1719–1724.

    CAS  PubMed  Google Scholar 

  30. Bertoli A, Franco M, Balzarini J, Johansson M, Karlsson A . Altered deoxyribonucleotide pools in T-lymphoblastoid cells expressing the multisubstrate nucleoside kinase of Drosophila melanogaster. FEBS J 2005; 272: 3918–3928.

    CAS  PubMed  Google Scholar 

  31. Egeblad-Welin L, Sonntag Y, Eklund H, Munch-Petersen B . Functional studies of active-site mutants from Drosophila melanogaster deoxyribonucleoside kinase. Investigations of the putative catalytic glutamate-arginine pair and of residues responsible for substrate specificity. FEBS J 2007; 274: 1542–1551.

    CAS  PubMed  Google Scholar 

  32. Solaroli N, Bjerke M, Amiri MH, Johansson M, Karlsson A . Active site mutants of Drosophila melanogaster multisubstrate deoxyribonucleoside kinase. Eur J Biochem 2003; 270: 2879–2884.

    CAS  PubMed  Google Scholar 

  33. Knecht W, Rozpedowska E, Le Breton C, Willer M, Gojkovic Z, Sandrini MP et al. Drosophila deoxyribonucleoside kinase mutants with enhanced ability to phosphorylate purine analogs. Gene Therapy 2007; 14: 1278–1286.

    CAS  PubMed  Google Scholar 

  34. Knecht W, Sandrini MP, Johansson K, Eklund H, Munch-Petersen B, Piskur J . A few amino acid substitutions can convert deoxyribonucleoside kinase specificity from pyrimidines to purines. EMBO J 2002; 21: 1873–1880.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Solaroli N, Johansson M, Balzarini J, Karlsson A . Enhanced toxicity of purine nucleoside analogs in cells expressing Drosophila melanogaster nucleoside kinase mutants. Gene Therapy 2007; 14: 86–92.

    CAS  PubMed  Google Scholar 

  36. Gerth ML, Lutz S . Non-homologous recombination of deoxyribonucleoside kinases from human and Drosophila melanogaster yields human-like enzymes with novel activities. J Mol Biol 2007; 370: 742–751.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Agarwal KC, Agarwal RP, Stoeckler JD, Parks Jr RE . Purine nucleoside phosphorylase. Microheterogeneity and comparison of kinetic behavior of the enzyme from several tissues and species. Biochemistry 1975; 14: 79–84.

    CAS  PubMed  Google Scholar 

  38. Krenitsky TA . Purine nucleoside phosphorylase: kinetics, mechanism, and specificity. Mol Pharmacol 1967; 3: 526–536.

    CAS  PubMed  Google Scholar 

  39. Sorscher EJ, Peng S, Bebok Z, Allan PW, Bennett Jr LL, Parker WB . Tumor cell bystander killing in colonic carcinoma utilizing the Escherichia coli DeoD gene to generate toxic purines. Gene Therapy 1994; 1: 233–238.

    CAS  PubMed  Google Scholar 

  40. Parker WB, King SA, Allan PW, Bennett Jr LL, Secrist III JA, Montgomery JA et al. In vivo gene therapy of cancer with E. coli purine nucleoside phosphorylase. Hum Gene Ther 1997; 8: 1637–1644.

    CAS  PubMed  Google Scholar 

  41. Parker WB, Allan PW, Shaddix SC, Rose LM, Speegle HF, Gillespie GY et al. Metabolism and metabolic actions of 6-methylpurine and 2-fluoroadenine in human cells. Biochem Pharmacol 1998; 55: 1673–1681.

    CAS  PubMed  Google Scholar 

  42. Hughes BW, Wells AH, Bebok Z, Gadi VK, Garver Jr RI, Parker WB et al. Bystander killing of melanoma cells using the human tyrosinase promoter to express the Escherichia coli purine nucleoside phosphorylase gene. Cancer Res 1995; 55: 3339–3345.

    CAS  PubMed  Google Scholar 

  43. Hughes BW, King SA, Allan PW, Parker WB, Sorscher EJ . Cell to cell contact is not required for bystander cell killing by Escherichia coli purine nucleoside phosphorylase. J Biol Chem 1998; 273: 2322–2328.

    CAS  PubMed  Google Scholar 

  44. Gadi VK, Alexander SD, Kudlow JE, Allan P, Parker WB, Sorscher EJ . In vivo sensitization of ovarian tumors to chemotherapy by expression of E. coli purine nucleoside phosphorylase in a small fraction of cells. Gene Therapy 2000; 7: 1738–1743.

    CAS  PubMed  Google Scholar 

  45. Kuriyama S, Nakatani T, Masui K, Sakamoto T, Tominaga K, Yoshikawa M et al. Bystander effect caused by suicide gene expression indicates the feasibility of gene therapy for hepatocellular carcinoma. Hepatology 1995; 22: 1838–1846.

    CAS  PubMed  Google Scholar 

  46. Qian C, Bilbao R, Bruna O, Prieto J . Induction of sensitivity to ganciclovir in human hepatocellular carcinoma cells by adenovirus-mediated gene transfer of herpes simplex virus thymidine kinase. Hepatology 1995; 22: 118–123.

    CAS  PubMed  Google Scholar 

  47. Mohr L, Shankara S, Yoon SK, Krohne TU, Geissler M, Roberts B et al. Gene therapy of hepatocellular carcinoma in vitro and in vivo in nude mice by adenoviral transfer of the Escherichia coli purine nucleoside phosphorylase gene. Hepatology 2000; 31: 606–614.

    CAS  PubMed  Google Scholar 

  48. Krohne TU, Shankara S, Geissler M, Roberts BL, Wands JR, Blum HE et al. Mechanisms of cell death induced by suicide genes encoding purine nucleoside phosphorylase and thymidine kinase in human hepatocellular carcinoma cells in vitro. Hepatology 2001; 34: 511–518.

    CAS  PubMed  Google Scholar 

  49. Kikuchi E, Menendez S, Ozu C, Ohori M, Cordon-Cardo C, Logg CR et al. Highly efficient gene delivery for bladder cancers by intravesically administered replication-competent retroviral vectors. Clin Cancer Res 2007; 13: 4511–4518.

    CAS  PubMed  Google Scholar 

  50. Deharvengt S, Rejiba S, Wack S, Aprahamian M, Hajri A . Efficient electrogene therapy for pancreatic adenocarcinoma treatment using the bacterial purine nucleoside phosphorylase suicide gene with fludarabine. Int J Oncol 2007; 30: 1397–1406.

    CAS  PubMed  Google Scholar 

  51. Hong JS, Waud WR, Levasseur DN, Townes TM, Wen H, McPherson SA et al. Excellent in vivo bystander activity of fludarabine phosphate against human glioma xenografts that express the Escherichia coli purine nucleoside phosphorylase gene. Cancer Res 2004; 64: 6610–6615.

    CAS  PubMed  Google Scholar 

  52. Parker WB, Allan PW, Hassan AE, Secrist III JA, Sorscher EJ, Waud WR . Antitumor activity of 2-fluoro-2′-deoxyadenosine against tumors that express Escherichia coli purine nucleoside phosphorylase. Cancer Gene Ther 2003; 10: 23–29.

    CAS  PubMed  Google Scholar 

  53. Martiniello-Wilks R, Wang XY, Voeks DJ, Dane A, Shaw JM, Mortensen E et al. Purine nucleoside phosphorylase and fludarabine phosphate gene-directed enzyme prodrug therapy suppresses primary tumour growth and pseudo-metastases in a mouse model of prostate cancer. J Gene Med 2004; 6: 1343–1357.

    CAS  PubMed  Google Scholar 

  54. Martiniello-Wilks R, Dane A, Voeks DJ, Jeyakumar G, Mortensen E, Shaw JM et al. Gene-directed enzyme prodrug therapy for prostate cancer in a mouse model that imitates the development of human disease. J Gene Med 2004; 6: 43–54.

    CAS  PubMed  Google Scholar 

  55. Voeks D, Martiniello-Wilks R, Madden V, Smith K, Bennetts E, Both GW et al. Gene therapy for prostate cancer delivered by ovine adenovirus and mediated by purine nucleoside phosphorylase and fludarabine in mouse models. Gene Therapy 2002; 9: 759–768.

    CAS  PubMed  Google Scholar 

  56. Wang XY, Martiniello-Wilks R, Shaw JM, Ho T, Coulston N, Cooke-Yarborough C et al. Preclinical evaluation of a prostate-targeted gene-directed enzyme prodrug therapy delivered by ovine atadenovirus. Gene Therapy 2004; 11: 1559–1567.

    CAS  PubMed  Google Scholar 

  57. Bennett EM, Anand R, Allan PW, Hassan AE, Hong JS, Levasseur DN et al. Designer gene therapy using an Escherichia coli purine nucleoside phosphorylase/prodrug system. Chem Biol 2003; 10: 1173–1181.

    CAS  PubMed  Google Scholar 

  58. Zaboikin M, Srinivasakumar N, Schuening F . Gene therapy with drug resistance genes. Cancer Gene Ther 2006; 13: 335–345.

    CAS  PubMed  Google Scholar 

  59. Budak-Alpdogan T, Banerjee D, Bertino JR . Hematopoietic stem cell gene therapy with drug resistance genes: an update. Cancer Gene Ther 2005; 12: 849–863.

    CAS  PubMed  Google Scholar 

  60. Bouffard DY, Laliberte J, Momparler RL . Kinetic studies on 2′,2′-difluorodeoxycytidine (Gemcitabine) with purified human deoxycytidine kinase and cytidine deaminase. Biochem Pharmacol 1993; 45: 1857–1861.

    CAS  PubMed  Google Scholar 

  61. Steuart CD, Burke PJ . Cytidine deaminase and the development of resistance to arabinosyl cytosine. Nat New Biol 1971; 233: 109–110.

    CAS  PubMed  Google Scholar 

  62. Vincenzetti S, Cambi A, Neuhard J, Garattini E, Vita A . Recombinant human cytidine deaminase: expression, purification, and characterization. Protein Expr Purif 1996; 8: 247–253.

    CAS  PubMed  Google Scholar 

  63. Beumer JH, Eiseman JL, Parise RA, Joseph E, Covey JM, Egorin MJ . Modulation of gemcitabine (2′,2′-difluoro-2′-deoxycytidine) pharmacokinetics, metabolism, and bioavailability in mice by 3,4,5,6-tetrahydrouridine. Clin Cancer Res 2008; 14: 3529–3535.

    CAS  PubMed  Google Scholar 

  64. Heinemann V, Xu YZ, Chubb S, Sen A, Hertel LW, Grindey GB et al. Cellular elimination of 2′,2′-difluorodeoxycytidine 5′-triphosphate: a mechanism of self-potentiation. Cancer Res 1992; 52: 533–539.

    CAS  PubMed  Google Scholar 

  65. Ohta T, Hori H, Ogawa M, Miyahara M, Kawasaki H, Taniguchi N et al. Impact of cytidine deaminase activity on intrinsic resistance to cytarabine in carcinoma cells. Oncol Rep 2004; 12: 1115–1120.

    CAS  PubMed  Google Scholar 

  66. Morita T, Matsuzaki A, Kurokawa S, Tokue A . Forced expression of cytidine deaminase confers sensitivity to capecitabine. Oncology 2003; 65: 267–274.

    CAS  PubMed  Google Scholar 

  67. Neff T, Blau CA . Forced expression of cytidine deaminase confers resistance to cytosine arabinoside and gemcitabine. Exp Hematol 1996; 24: 1340–1346.

    CAS  PubMed  Google Scholar 

  68. Momparler RL, Laliberte J, Eliopoulos N, Beausejour C, Cournoyer D . Transfection of murine fibroblast cells with human cytidine deaminase cDNA confers resistance to cytosine arabinoside. Anticancer Drugs 1996; 7: 266–274.

    CAS  PubMed  Google Scholar 

  69. Momparler RL, Eliopoulos N, Bovenzi V, Letourneau S, Greenbaum M, Cournoyer D . Resistance to cytosine arabinoside by retrovirally mediated gene transfer of human cytidine deaminase into murine fibroblast and hematopoietic cells. Cancer Gene Ther 1996; 3: 331–338.

    CAS  PubMed  Google Scholar 

  70. Eliopoulos N, Cournoyer D, Momparler RL . Drug resistance to 5-aza-2′-deoxycytidine, 2′,2′-difluorodeoxycytidine, and cytosine arabinoside conferred by retroviral-mediated transfer of human cytidine deaminase cDNA into murine cells. Cancer Chemother Pharmacol 1998; 42: 373–378.

    CAS  PubMed  Google Scholar 

  71. Flasshove M, Frings W, Schroder JK, Moritz T, Schutte J, Seeber S . Transfer of the cytidine deaminase cDNA into hematopoietic cells. Leuk Res 1999; 23: 1047–1053.

    CAS  PubMed  Google Scholar 

  72. Beausejour CM, Eliopoulos N, Momparler L, Le NL, Momparler RL . Selection of drug-resistant transduced cells with cytosine nucleoside analogs using the human cytidine deaminase gene. Cancer Gene Ther 2001; 8: 669–676.

    CAS  PubMed  Google Scholar 

  73. Eliopoulos N, Bovenzi V, Le NL, Momparler LF, Greenbaum M, Letourneau S et al. Retroviral transfer and long-term expression of human cytidine deaminase cDNA in hematopoietic cells following transplantation in mice. Gene Therapy 1998; 5: 1545–1551.

    CAS  PubMed  Google Scholar 

  74. Bardenheuer W, Lehmberg K, Rattmann I, Brueckner A, Schneider A, Sorg UR et al. Resistance to cytarabine and gemcitabine and in vitro selection of transduced cells after retroviral expression of cytidine deaminase in human hematopoietic progenitor cells. Leukemia 2005; 19: 2281–2288.

    CAS  PubMed  Google Scholar 

  75. Rattmann I, Kleff V, Sorg UR, Bardenheuer W, Brueckner A, Hilger RA et al. Gene transfer of cytidine deaminase protects myelopoiesis from cytidine analogs in an in vivo murine transplant model. Blood 2006; 108: 2965–2971.

    CAS  PubMed  Google Scholar 

  76. Lisboa BC, Machado Tda R, Pimenta DC, Han SW . Cloning and characterization of an alternative splicing transcript of the gene coding for human cytidine deaminase. Biochem Cell Biol 2007; 85: 96–102.

    CAS  PubMed  Google Scholar 

  77. Kirch HC, Schroder J, Hoppe H, Esche H, Seeber S, Schutte J . Recombinant gene products of two natural variants of the human cytidine deaminase gene confer different deamination rates of cytarabine in vitro. Exp Hematol 1998; 26: 421–425.

    CAS  PubMed  Google Scholar 

  78. Gilbert JA, Salavaggione OE, Ji Y, Pelleymounter LL, Eckloff BW, Wieben ED et al. Gemcitabine pharmacogenomics: cytidine deaminase and deoxycytidylate deaminase gene resequencing and functional genomics. Clin Cancer Res 2006; 12: 1794–1803.

    CAS  PubMed  Google Scholar 

  79. Yue L, Saikawa Y, Ota K, Tanaka M, Nishimura R, Uehara T et al. A functional single-nucleotide polymorphism in the human cytidine deaminase gene contributing to ara-C sensitivity. Pharmacogenetics 2003; 13: 29–38.

    CAS  PubMed  Google Scholar 

  80. Vincenzetti S, Quadrini B, Mariani P, De Sanctis G, Cammertoni N, Polzonetti V et al. Modulation of human cytidine deaminase by specific aminoacids involved in the intersubunit interactions. Proteins 2008; 70: 144–156.

    CAS  PubMed  Google Scholar 

  81. Grove KL, Guo X, Liu SH, Gao Z, Chu CK, Cheng YC . Anticancer activity of beta-L-dioxolane-cytidine, a novel nucleoside analogue with the unnatural L configuration. Cancer Res 1995; 55: 3008–3011.

    CAS  PubMed  Google Scholar 

  82. Boivin AJ, Gourdeau H, Momparler RL . Action of troxacitabine on cells transduced with human cytidine deaminase cDNA. Cancer Invest 2004; 22: 25–29.

    CAS  PubMed  Google Scholar 

  83. Gourdeau H, Bibeau L, Ouellet F, Custeau D, Bernier L, Bowlin T . Comparative study of a novel nucleoside analogue (Troxatyl, troxacitabine, BCH-4556) and AraC against leukemic human tumor xenografts expressing high or low cytidine deaminase activity. Cancer Chemother Pharmacol 2001; 47: 236–240.

    CAS  PubMed  Google Scholar 

  84. Ercikan-Abali EA, Mineishi S, Tong Y, Nakahara S, Waltham MC, Banerjee D et al. Active site-directed double mutants of dihydrofolate reductase. Cancer Res 1996; 56: 4142–4145.

    CAS  PubMed  Google Scholar 

  85. Budak-Alpdogan T, Alpdogan O, Banerjee D, Wang E, Moore MA, Bertino JR . Methotrexate and cytarabine inhibit progression of human lymphoma in NOD/SCID mice carrying a mutant dihydrofolate reductase and cytidine deaminase fusion gene. Mol Ther 2004; 10: 574–584.

    CAS  PubMed  Google Scholar 

  86. Schroder JK, Seidelmann M, Kirch HC, Seeber S, Schutte J . Assessment of resistance induction to cytosine arabinoside following transfer and overexpression of the deoxycytidylate deaminase gene in vitro. Leuk Res 1998; 22: 619–624.

    CAS  PubMed  Google Scholar 

  87. Davidson JD, Ma L, Flagella M, Geeganage S, Gelbert LM, Slapak CA . An increase in the expression of ribonucleotide reductase large subunit 1 is associated with gemcitabine resistance in non-small cell lung cancer cell lines. Cancer Res 2004; 64: 3761–3766.

    CAS  PubMed  Google Scholar 

  88. Jordheim LP, Guittet O, Lepoivre M, Galmarini CM, Dumontet C . Increased expression of the large subunit of ribonucleotide reductase is involved in resistance to gemcitabine in human mammary adenocarcinoma cells. Mol Cancer Ther 2005; 4: 1268–1276.

    CAS  PubMed  Google Scholar 

  89. Nakahira S, Nakamori S, Tsujie M, Takahashi Y, Okami J, Yoshioka S et al. Involvement of ribonucleotide reductase M1 subunit overexpression in gemcitabine resistance of human pancreatic cancer. Int J Cancer 2007; 120: 1355–1363.

    CAS  PubMed  Google Scholar 

  90. Galmarini CM, Graham K, Thomas X, Calvo F, Rousselot P, El Jafaari A et al. Expression of high Km 5′-nucleotidase in leukemic blasts is an independent prognostic factor in adults with acute myeloid leukemia. Blood 2001; 98: 1922–1926.

    CAS  PubMed  Google Scholar 

  91. Sandrini MP, Clausen AR, On SL, Aarestrup FM, Munch-Petersen B, Piskur J . Nucleoside analogues are activated by bacterial deoxyribonucleoside kinases in a species-specific manner. J Antimicrob Chemother 2007; 60: 510–520.

    CAS  PubMed  Google Scholar 

  92. Sandrini MP, Shannon O, Clausen AR, Bjorck L, Piskur J . Deoxyribonucleoside kinases activate nucleoside antibiotics in severely pathogenic bacteria. Antimicrob Agents Chemother 2007; 51: 2726–2732.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Spratlin J, Sangha R, Glubrecht D, Dabbagh L, Young JD, Dumontet C et al. The absence of human equilibrative nucleoside transporter 1 is associated with reduced survival in patients with gemcitabine-treated pancreas adenocarcinoma. Clin Cancer Res 2004; 10: 6956–6961.

    CAS  PubMed  Google Scholar 

  94. Molina-Arcas M, Marce S, Villamor N, Huber-Ruano I, Casado FJ, Bellosillo B et al. Equilibrative nucleoside transporter-2 (hENT2) protein expression correlates with ex vivo sensitivity to fludarabine in chronic lymphocytic leukemia (CLL) cells. Leukemia 2005; 19: 64–68.

    CAS  PubMed  Google Scholar 

  95. Mackey JR, Galmarini CM, Graham KA, Joy AA, Delmer A, Dabbagh L et al. Quantitative analysis of nucleoside transporter and metabolism gene expression in chronic lymphocytic leukemia (CLL): identification of fludarabine-sensitive and -insensitive populations. Blood 2005; 105: 767–774.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work in our laboratory is partially funded by Olav Raagholt og Gerd Meidel Raagholts stiftelse for forskning and Astri og Birger Torsteds legat.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L P Jordheim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hébrard, C., Dumontet, C. & Jordheim, L. Development of gene therapy in association with clinically used cytotoxic deoxynucleoside analogues. Cancer Gene Ther 16, 541–550 (2009). https://doi.org/10.1038/cgt.2009.25

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2009.25

Keywords

This article is cited by

Search

Quick links