Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Antitumor effects of radioiodinated antisense oligonuclide mediated by VIP receptor

Abstract

A 15-mer phosphorothioate antisense oligonuclide (ASON) complementary to the translation start region of the C-myc oncogene mRNA was radioiodinated to enhance its antitumor activity, and vasoactive intestinal peptide bound covalently polylysine (VIP-polylysine) was used as a carrier to deliver the oligonucleotide into VIP receptor-positive tumor cells. The antitumor activity of radioiodinated ASON conjugated to VIP-polylysine(VIP-131I-ASON) was investigated in athymic mice bearing HT29 tumor xenografts in comparison with unconjugated radioiodinated ASON(131I-ASON), unlabelled ASON (VIP-ASON) and scrambled oligonucleotide (VIP-131I-MON) conjugated to VIP-polylysine. Conjugation 125I-ASON to VIP-polylysine resulted in a 5.6-fold decrease in the plasma clearance and a 3.4-fold increase in tumor uptake of the radiopharmaceutical. Athymic mice bearing HT29 tumor xenografts were treated with 4 weekly doses of VIP-131I-ASON and the antitumor effects were assessed by use of the slope of the tumor growth curve. VIP-131I-ASON exhibited strong antitumor effects against HT29 xenografts, decreasing tumor growth rate 9.67-, 7.90-fold more effectively than 131I-ASON and VIP-ASON at equivalent doses of ASON. Conversely, 131I-ASON, VIP-ASON or VIP-131I-MON caused no significant effect compared with the normal saline. These data indicated that use of a VIP-polylysine carrier greatly increased HT29 tumor uptake of ASON and treatment with the VIP-131I-ASON complexes resulted in tumor growth delay in human colon cancer xenograft.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Matsumoto T, Numata M, Anada T, et al. Chemically modified polysaccharide schizophyllan for antisense oligonucleotides delivery to enhance the cellular uptake efficiency. Biochim Biophys Acta. 2004;1670:91–104.

    Article  CAS  Google Scholar 

  2. Sazani P, Astriab-Fischer A, Kole R . Effects of base modifications on antisense properties of 2'-O-methoxyethyl and PNA oligonucleotides. Antisense Nucleic Acid Drug Dev. 2003;13:119–128.

    Article  CAS  Google Scholar 

  3. Gokhale PC, Zhang C, Newsome JT, et al. Pharmacokinetics, toxicity, and efficacy of ends-modified raf antisense oligodeoxyribonucleotide encapsulated in a novel cationic liposome. Clin Cancer Res. 2002;8:2361–3611.

    Google Scholar 

  4. Leonetti C, Biroccio A, Benassi B, et al. Encapsulation of c-myc antisense oligodeoxynucleotides in lipid particles improves antitumoral efficacy in vivo in a human melanoma line. Cancer Gene Ther. 2001;8:459–468.

    Article  CAS  Google Scholar 

  5. Stewart DA, Xu XH, Thomas SD, Miller DM . Acridine-modified, clamp-forming antisense oligonucleotides synergize with cisplatin to inhibit c-Myc expression and B16-F0 tumor progression. Nucleic Acids Res. 2002;30:2565–2574.

    Article  CAS  Google Scholar 

  6. Stewart DA, Thomas SD, Mayfield CA, Miller DM . Psoralen-modified clamp-forming antisense oligonucleotides reduce cellular c-Myc protein expression and B16-F0 proliferation. Nucleic Acids Res. 2001;29:4052–4061.

    Article  CAS  Google Scholar 

  7. Biroccio A, Leonetti C, Zupi G . The future of antisense therapy: combination with anticancer treatments. Oncogene. 2003;22:6579–6588.

    Article  CAS  Google Scholar 

  8. Merdan T, Kopecek J, Kissel T . Prospects for cationic polymers in gene and oligonucleotide therapy against cancer. Adv Drug Deliv Rev. 2002;54:715–758.

    Article  CAS  Google Scholar 

  9. Gonzalez Ferreiro M, Tillman LG, Hardee G, Bodmeier R . Alginate/poly-L-lysine microparticles for the intestinal delivery of antisense oligonucleotides. Pharm Res. 2002;19:755–764.

    Article  Google Scholar 

  10. Shadidi M, Sioud M . Identification of novel carrier peptides for the specific delivery of therapeutics into cancer cells. FASEB J. 2003;17:256–258.

    Article  CAS  Google Scholar 

  11. Astriab-Fisher A, Sergueev D, Fisher M, Shaw BR, Juliano RL . Conjugates of antisense oligonucleotides with the Tat and antennapedia cell-penetrating peptides: effects on cellular uptake, binding to target sequences, and biologic actions. Pharm Res. 2002;19:744–754.

    Article  CAS  Google Scholar 

  12. Bijsterbosch MK, Manoharan M, Dorland R, Van Veghel R, Biessen EA, Van Berkel TJ . bis-Cholesteryl-conjugated phosphorothioate oligodeoxynucleotides are highly selectively taken up by the liver. J Pharmacol Exp Ther. 2002;302:619–626.

    Article  CAS  Google Scholar 

  13. Zhang YM, Rusckowski M, Liu N, Liu C, Hnatowich DJ . Cationic liposomes enhance cellular/nuclear localization of 99mTc-antisense oligonucleotides in target tumor cells. Cancer Biother Radiopharm. 2001;16:411–419.

    Article  CAS  Google Scholar 

  14. Hafez IM, Maurer N, Cullis PR . On the mechanism whereby cationic lipids promote intracellular delivery of polynucleic acids. Gene Therapy. 2001;8:1188–1196.

    Article  CAS  Google Scholar 

  15. Shi F, Wasungu L, Nomden A, et al. Interference of poly(ethylene glycol)-lipid analogues with cationic-lipid-mediated delivery of oligonucleotides; role of lipid exchangeability and non-lamellar transitions. Biochem J. 2002;366:333–341.

    Article  CAS  Google Scholar 

  16. Biessen EA, Sliedregt-Bol K, T Hoen PA, Prince P, et al. Design of a targeted peptide nucleic acid prodrug to inhibit hepatic human microsomal triglyceride transfer protein expression in hepatocytes. Bioconjug Chem. 2002;13:295–302.

    Article  CAS  Google Scholar 

  17. Shi N, Boado RJ, Pardridge WM . Antisense imaging of gene expression in the brain in vivo. Proc Natl Acad Sci USA. 2000;97:14709–14714.

    Article  CAS  Google Scholar 

  18. Leamon CP, Cooper SR, Hardee GE . Folate-liposome-mediated antisense oligodeoxynucleotide targeting to cancer cells: evaluation in vitro and in vivo. Bioconjug Chem. 2003;14:738–747.

    Article  CAS  Google Scholar 

  19. Guillem VM, Tormo M, Moret I, et al. Targeted oligonucleotide delivery in human lymphoma cell lines using a polyethyleneimine based immunopolyplex. J Control Release. 2002;83:133–146.

    Article  CAS  Google Scholar 

  20. Zhang Y, Jeong Lee H, Boado RJ, Pardridge WM . Receptor-mediated delivery of an antisense gene to human brain cancer cells. J Gene Med. 2002;4:183–194.

    Article  Google Scholar 

  21. Reubi JC, Laderach U, Waser B, Gebbers JO, Robberecht P, Laissue JA . Vasoactive intestinal peptide/pituitary adenylate cyclase-activating peptide receptor subtypes in human tumors and their tissues of origin. Cancer Res. 2000;60:3105–3112.

    CAS  Google Scholar 

  22. Moody TW, Czerwinski G, Tarasova NI, Michejda CJ . VIP-ellipticine derivatives inhibit the growth of breast cancer cells. Life Sci. 2002;71:1005–1014.

    Article  CAS  Google Scholar 

  23. Zhang C, Tan TZ, Kuang AR, et al. Antisense inhibition effect of 99mTc-VIP-ASON on the human colon adenocarcinoma cell line HT29. Zhonghua He Yi Xue Zazhi. 2003: 148–151.

  24. Dionyssis SI, Bern H . Radioiodinated DNA as potential tumor-imaging agent. JNM. 1979;20:785–788.

    Google Scholar 

  25. Olfert ED, Cross BM, McWilliam AA, eds. Guide to the Care and Use of Experimental Animals. Ottawa, Ontario, Canada: Canadian Council on Animal Care; 1993: 173–176.

    Google Scholar 

  26. Lee HJ, Boado RJ, Braasch DA, Corey DR, Pardridge WM . Imaging gene expression in the brain in vivo in a transgenic mouse model of Huntington's disease with an antisense radiopharmaceutical and drug-targeting technology. J Nucl Med. 2002;43:948–956.

    CAS  PubMed  Google Scholar 

  27. Advani R, Peethambaram P, Lum BL, et al. A Phase II trial of aprinocarsen, an antisense oligonucleotide inhibitor of protein kinase C alpha, administered as a 21-day infusion to patients with advanced ovarian carcinoma. Cancer. 2004;100:321–326.

    Article  CAS  Google Scholar 

  28. Rudin CM, Kozloff M, Hoffman PC, et al. Phase I study of G3139, a bcl-2 antisense oligonucleotide, combined with carboplatin and etoposide in patients with small-cell lung cancer. J Clin Oncol. 2004;22:1110–1117.

    Article  CAS  Google Scholar 

  29. Henry SP, Templin MV, Gillett N, Rojko J, Levin AA . Correlation of toxicity and pharmacokinetic properties of a phosphorothioate oligonucleotide designed to inhibit ICAM-1. Toxicol Pathol. 1999;27:95–100.

    Article  CAS  Google Scholar 

  30. Monteith DK, Geary RS, Leeds JM, Johnston J, Monia BP, Levin AA . Preclinical evaluation of the effects of a novel antisense compound targeting C-raf kinase in mice and monkeys. Toxicol Sci. 1998;46:365–375.

    CAS  PubMed  Google Scholar 

  31. Stalteri MA, Mather SJ . Hybridization and cell uptake studies with radiolabeled antisense oligonucleotides. Nucl Med Commun. 2001;22:1171–1179.

    Article  CAS  Google Scholar 

  32. Zhang YM, Wang Y, Liu N, Zhu ZH, Rusckowski M, Hnatowich DJ . In vitro investigations of tumor targeting with (99 m)Tc-labeled antisense DNA. J Nucl Med. 2001;42:1660–1669.

    CAS  PubMed  Google Scholar 

  33. Kairemo KJ, Jekunen AP, Tenhunen M . Dosimetry and optimization of in vivo targeting with radiolabeled antisense oligodeoxynucleotides: oligonucleotide radiotherapy. Methods Enzymol. 2000;314:506–524.

    Article  CAS  Google Scholar 

  34. Watanabe N, Sawai H, Endo K, et al. Labeling of phosphorothioate antisense oligonucleotides with yttrium-90. Nucl Med Biol. 1999;26:239–243.

    Article  CAS  Google Scholar 

  35. Kairemo KJ, Tenhunen M, Jekunen AP . Gene therapy using antisense oligodeoxynucleotides labeled with Auger-emitting radionuclides. Cancer Gene Ther. 1998;5:408–412.

    CAS  PubMed  Google Scholar 

  36. Sedelnikova OA, Panyutin IG, Thierry AR, Neumann RD . Radiotoxicity of iodine-125-labeled oligodeoxyribonucleotides in mammalian cells. JNM. 1998;39:1412–1418.

    CAS  PubMed  Google Scholar 

  37. Hop TC, Parkinson DR . Antisense oligonucleotide as therapeutics for malignant diseases. Semin Oncol. 1997;24:187–202.

    Google Scholar 

Download references

Acknowledgements

We thank Miss Xie and the staff of the animal center of the Sichuan university for their help with the animal experiments. This study was financially supported by The National Natural Science Foundation of China, Grant No. 30270415.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianzhi Tan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ou, X., Tan, T., He, L. et al. Antitumor effects of radioiodinated antisense oligonuclide mediated by VIP receptor. Cancer Gene Ther 12, 313–320 (2005). https://doi.org/10.1038/sj.cgt.7700787

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700787

Keywords

This article is cited by

Search

Quick links