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Mathematical models of targeted cancer therapy
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Improved understanding of the molecular underpinnings of cancer initiation and progression has led to the development of targeted
cancer therapies. The importance of these new methods of cancer treatment necessitates further research into the dynamic
interactions between cancer cells and therapeutic agents, as well as a means of analysing their relationship quantitatively. The present
review outlines the application of mathematical modelling to the dynamics of targeted cancer therapy, focusing particular attention on
chronic myeloid leukaemia and its treatment with imatinib (Glivec).
British Journal of Cancer (2006) 95, 1136–1141. doi:10.1038/sj.bjc.6603310 www.bjcancer.com
Published online 10 October 2006
& 2006 Cancer Research UK

Keywords: targeted cancer therapy; mathematical biology; chronic myeloid leukaemia

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

The decision as to whether cells proliferate or die is dictated by
complex networks of regulatory factors, stress signals and
interactions with the surrounding microenvironment. Disruption
of the normal regulation of cell division and differentiation plays a
vital role in tumorigenesis (Vogelstein and Kinzler, 2001). Recent
advances in the research examining these molecular causes of
cancer offer the possibility of specifically targeting abnormal
proteins and hence designing more efficient and effective therapy.
‘Targeted therapy’ refers to a new generation of cancer drugs that
interact with specific molecular targets thought to lie at the heart of
tumour growth or progression. The research into adequate targets
is based on a detailed understanding of the genetic alterations
driving tumorigenesis (Hanahan and Weinberg, 2000); this
approach contrasts with the traditional strategy to discover
nonspecific cytotoxic therapeutics. Table 1 provides a list of some
currently used or researched targeted agents (Sawyers, 2004).
Targeting mutant kinases has proven to be highly successful in

the treatment of cancers whose growth is acutely dependent on
those proteins. Imatinib (Glivec) serves as an example of successful
targeted therapy and is the topic of this review; it is used for the
treatment of chronic myeloid leukaemia (CML), which is char-
acterised by the BCR-ABL oncogene, and of gastrointestinal stromal
tumours harbouring mutations in the c-Kit kinase. Two follow-up
drugs to imatinib, AMN107 (nilotinib) and BMS-354825 (dasatinib),
have been designed for even more efficient inhibition of BCR-ABL
(Shah et al, 2004). Treatment of lung cancers with the epidermal
growth factor receptor (EGFR) inhibitor, gefitinib (Iressa), is
promising in patients carrying point mutations in the EGFR kinase
domain (Couzin, 2002; Herbst et al, 2004). Avastin (bevacizamab) is
a monoclonal antibody directed against the vascular endothelial
growth factor and has been approved as a treatment of colon cancer

(Marx, 2005). Avastin acts by inhibiting angiogenesis and might
thus prove successful in treating many different tumour types.
A quantitative understanding of cancer biology requires the

development of a mathematical framework capable of describing
the fundamental principles governing tumour initiation and
progression (Moolgavkar and Knudson, 1981; Knudson, 2001).
The dynamics of tumorigenesis are determined by the same
underlying principles that govern evolution: mutation and
selection. Therefore, mathematical models can be used to study
cancer initiation, progression and responses to therapy (Michor
et al, 2004). Only when the dynamics of cancer cells during therapy
are understood quantitatively can specific predictions be made
about treatment success, cancer cell kinetics and failure of therapy
owing to resistance. Mathematical models are therefore indis-
pensable to a complete understanding of targeted therapy.
There have been only a few attempts made to examine the

dynamic relationship between cancer cells and targeted therapeutic
agents via mathematical modelling. Green et al (2001) developed a
mathematical model for antibody-targeted therapy of colorectal
cancer. They collected data on the in vivo distribution of antibodies
against carcinoembryonic antigen and identified the most useful
parameters for determining antibody localisation: the affinity for the
antibody, the flow of the antibody through the tumour and the rate
of elimination of the antibody from the tumour. Their model can
help to optimally design antibody-based cancer therapy.
Wein et al (2002) proposed a mathematical model of the spatio-

temporal dynamics of a brain tumour treated with a specific
cytotoxic agent. They derived a formula for the tumour-cure
probability given specific parameters regarding tumour character-
istics, drug design and drug delivery. They then determined the
required circumstances within which targeted therapy can be effective.
Iwasa et al (2003) and Michor et al (2006) examined the

probability of resistance to targeted cancer therapy with a model
based on multi-type branching processes. They calculated the
escape dynamics for arbitrary mutation networks necessary to
confer resistance, and extended this to cover any possible fitness
landscape. They determined the probability of the success and
failure of biomedical intervention against rapidly evolving cells.
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Charusanti et al (2004) presented a mathematical model of
signalling events in CML cells. They examined the effects of Glivec
on the autophosphorylation of the BCR-ABL oncoprotein and
subsequent signalling through the Crkl pathway, and predicted a
minimal concentration for drug effectiveness. The model suggests
that cellular drug clearance mechanisms reduce the efficacy of
Glivec in blast crisis cells, and that these resistance mechanisms
might be present from the onset of disease.
Araujo et al (2005) used mathematical modelling to investigate

combination therapy in which multiple nodes in a signal
transduction pathway are targeted simultaneously with specific
inhibitors. They demonstrated that the attenuation of signalling is
significantly enhanced when several upstream processes are
inhibited, and that this weakening is most pronounced in signals
downstream of serially connected targets.
Komarova and Wodarz (2005a, b) presented a mathematical

framework to study the emergence of resistance in cancers treated
with targeted small-molecule drugs. They considered a stochastic
dynamical system based on the turnover rate of tumour cells and
the rate at which resistant mutants arise, and they found that
resistance develops mainly before the start of treatment and, for
cancers with high turnover rates, that combination therapy is less
likely to yield an advantage over single-drug therapy.
There exists a large volume of literature concerning mathema-

tical models of antiviral therapy, and many of the ideas arising in

this context can be applied to targeted cancer therapy (Nowak and
May, 2000).
Michor et al (2005) designed a mathematical model to analyse

the in vivo kinetics of CML during treatment with the targeted
agent imatinib (Glivec). The following discussion will outline the
approach and importance of this promising method of cancer
treatment while emphasising the need for further investigations
into the mathematical models capable of describing clinical
responses to these therapies.

DYNAMICS OF CML

Chronic myeloid leukaemia is a blood cancer characterised by
excessive numbers of granulocytes, erythrocytes and platelets in
peripheral blood (Sawyers, 1999). The molecular hallmark of CML
is the Philadelphia (Ph) chromosome: a reciprocal 9;22 transloca-
tion generating a fusion oncogene, BCR-ABL. The Ph chromosome
arises in a haematopoietic stem cell and renders the cell’s growth
and survival independent of cytokines (Gishizky and Witte, 1992).
This proliferative independence is then passed along to each
daughter cell, which eventually leads to the clinical manifestations
of CML. The disease generally progresses through three phases: a
benign chronic phase that may last several years untreated,
followed by an accelerated phase which terminates in the third,

Table 1 Targeted therapies and their agents

Drug Target Function of target Disease

Imatinib (Gleevec)
Nilotinib

Abl
Kit
PDFGR

Growth factor receptors CML
GIST
HES
CMML
DFSP

Dasatinib SFK/Abl
Kit
Lyn
Sfc

Growth factor receptor
Cell adhesion
Migration and invasion

CML
GIST
Prostate cancer

Sunitinib malate (Sutent) Multiple tyrosine kinases Growth and angiogenesis GIFT
RCC

Gefitinib (Iressa)
Erlotinib (Tarceva)

EGFR Growth factor receptor Lung cancer

Lapatinib (Tykerb) EGFR

ErbB2

Growth factor receptor

Growth and differentiation

Solid tumours
Lung cancer
Breast cancer

Trastuzumab (Herceptin) ErbB2 Growth and differentiation Breast cancer

Bevacizamab (Avastin) VEGF ligand Angiogenesis Colon cancer

Temsirolimus
Everolimus

mTOR Translation and cell division Various cancers

Bortezombi (Velcade) Proteasomes Cell function and growth Multiple myeloma
Oblimersen (Genasense) BCL-2 Inhibition of apoptosis Leukaemia

Non-Hodgkin’s lymphoma
Solid tumours

PKC-412
NKB-518
CEP-701

FLT3 Growth factor receptor AML

BAY 43-9006 VEGFR
RAF

Angiogenesis
Growth factor receptor

Kidney cancer
Melanoma

SU-011248 VEGFR Angiogenesis Kidney cancer

AML¼ acute myeloid leukaemia; CML¼ chronic myeloid leukaemia; CMML¼ chronic myelomonocytic leukaemia; DFSP¼ dermatofibrosarcoma protuberans;
EGFR¼ epidermal growth factor receptor; GIFT¼ gastrointestinal fibrous tumour; GIST¼ gastrointestinal stromal tumours; HES¼ hypereosinophilic syndrome;
mTOR¼mammalian target of rapamycin; PDGFR¼ platelet-derived growth factor receptor; RCC¼ renal cell carcinoma; SFK¼ Schistosoma mansoni Fer-like kinase;
VEGF¼ vascular endothelial growth factor; VEGFR¼ vascular endothelial growth factor receptor.
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rapidly fatal phase known as the blast crisis (Sawyers, 1999;
Deininger et al, 2005).
Before the introduction of imatinib mesylate (Glivec) as a

targeted therapy for CML, treatment options were relatively
unsuccessful and often costly or of limited applicability. Allogeneic
bone marrow transplant resulted in event-free survival rates
between 40 and 70%; however, only 20–25% of CML patients were
eligible for related allogeneic transplant owing to the need for a
matching bone marrow donor (Kantarjian et al, 1996). Thus, most
patients were initially treated with hydroxyurea, busulfan or
interferon alpha, the latter of which attempted to use the body’s
natural defence proteins to combat the disease. Intensive
chemotherapy has also been attempted as a treatment regimen,
generally leading to limited cytogenetic remission in 60–70% of
patients. Lastly, autologous stem cell transplantation represents
another treatment option offering a 4- to 5-year survival rate of
56–70% following the transplant (Kantarjian et al, 1996).
The revolution in CML treatment came about with the discovery

of imatinib mesylate (Glivec) as a targeted chemotherapeutic agent
(Druker et al, 2001). This compound was demonstrated to be
effective in all stages of the disease (Kantarjian et al, 2002; Sawyers
et al, 2002). Imatinib binds competitively with ATP to BCR-ABL
and blocks its abnormal signalling. It selectively inhibits the
proliferation of BCR-ABL-positive cell lines. However, acquired
resistance to imatinib develops in a substantial fraction of patients.
In 70–80% of these cases, acquired resistance is caused by point
mutations in the ABL kinase domain (Gorre et al, 2001). So far,
about 40 different point mutations have been discovered, each of
which is sufficient to cause resistance to imatinib (Branford et al,
2003a). Of those patients who start imatinib in the early chronic,
late chronic and accelerated phase, respectively, 12, 32 and 62%
develop detectable resistance within 2 years of treatment (Branford
et al, 2003b). Here, early chronic phase refers to patients who
commenced imatinib within 1 year of diagnosis.
Imatinib stands as a prime example of what may be possible due

to the burgeoning rise of targeted cancer therapies. However,
imatinib fails to eliminate residual disease which has been shown
to be part of the bone marrow compartment (Bhatia et al, 2003;
Muller et al, 2003; Chu et al, 2005). Several important questions
remain: What are the dynamics of relapse due to imatinib
resistance? Can imatinib eradicate leukaemic stem cells? What
effect does imatinib exert on different subpopulations of leukaemic
cells? How can combination therapy be optimally administered?
The answers to such questions are crucial to the appropriate
treatment of patients diagnosed with CML, and they require a
quantitative means of analysing the available data. Mathematical
modelling offers just such an analytical tool.

The data

In Michor et al (2005), we analysed data from 169 CML patients
followed over 12 months of treatment with imatinib. The disease
burden was monitored by quantitative PCR of the BCR-ABL
oncogene, normalised by the value of BCR to compensate for the
efficiency of reverse transcription and variations in RNA quality.
Most of the patients show a biphasic decline of the leukaemic cell
burden (Figure 1A). The average of the first slope is 0.0570.02 and
suggests that there is a subpopulation of cancer cells that has a
mean lifespan of 1/0.05¼ 20 days during imatinib therapy. The
average of the second slope is 0.00870.004, suggesting that
another subpopulation of cancer cells has a mean lifespan of
1/0.008¼ 125 days during treatment. Imatinib leads to a 5000-fold
decline in the leukaemic cell count over the first 12 months of
therapy.
With these data, we can quantify the CML kinetics in vivo. We

know from the biology of the haematopoietic system (Hoffbrand
et al, 1999; Beutler et al, 2000; Shizuru et al, 2005) that terminally
differentiated cells have a lifespan of approximately 1 day. The first

slope seen in the data suggests that there is a subpopulation, the
differentiated leukaemic cells, that have an average lifespan of 20
days, and the second slope suggests that another subpopulation,
the leukaemic progenitors, have a lifespan of 125 days during
imatinib therapy.
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Figure 1 Chronic myeloid leukaemia patient data. The figure shows the
leukaemic cell burden in a patient without resistance (A), in a patient
whose therapy is stopped (B) and in a patient developing resistance (C).
Imatinib therapy commences at day 0, and the percentage of leukaemic
cells in peripheral blood is measured by quantitative PCR of the BCR-ABL
oncogene normalised by the values of BCR. (A) Upon initiation of imatinib
treatment, the leukaemic cell burden declines bi-phasically. The first slope
reflects the depletion of differentiated cancer cells and the second slope
reflects the depletion of leukaemic progenitors. (B) If therapy is stopped,
the leukaemic cell load returns to levels at or beyond pretreatment baseline
because imatinib is not capable of decreasing the abundance of leukaemic
stem cells. (C) Resistance evolves in many patients after a variable period of
successful therapy. The patient shown developed the resistance mutation
M351T (methionine-threonine substitution at position 351) before day 100
of therapy. Figure adapted from Michor et al (2005).
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We used data from patients who discontinued treatment to infer
the effect of imatinib on leukaemic stem cells. Despite continuous
therapy of up to 3 years, the leukaemic cell load rapidly returns to
levels at or beyond pretreatment baseline upon discontinuation of
imatinib (Figure 1B). This rapid resurgence of leukaemic cells after
cessation of therapy is due to the fact that imatinib inhibits the
production of terminally differentiated cancer cells 5000-fold;

hence, discontinuation of therapy leads to a 5000-fold increase in
the production of leukaemic cells. The level the leukaemic cell load
reaches after discontinuation signifies the behaviour of the cell
population that is driving the disease: the leukaemic stem cells. If
the cell number settles at levels well below pretreatment baseline,
then leukaemic stem cells were depleted by therapy. If the levels
settle at or beyond the baseline as seen in our patients, then

107

106

105

104

103

102

109

108

107

106

105

104

1011

1010

109

108

107

106

105

1013

1012

1011

1010

109

108

102

101

100

10−1

10−2

102

101

100

10−1

10−2

102

101

100

10−1

10−2

1013

1012

1011

1010

109

108

1013

1012

1011

1010

109

108

1011

1010

109

108

107

106

105

1011

1010

109

108

107

106

105

109

108

107

106

105

104

109

108

107

106

105

104

107

106

105

104

103

102

107

106

105

104

103

102

200 400 200 400 200 400

200 400 200 400 200 400

200 400 200 400 200 400

200

B
C

R
-A

B
L/

B
C

R
T

C
D

C
P

C
S

C

400 200 400 200

200 400 200 400 200 400

400

A B C

Figure 2 Model dynamics. The figure shows the dynamics of treatment without resistance mutations (A), when therapy is stopped (B), and with
resistance mutations (C). The rows show the simulation output for stem cell dynamics (SC), progenitors (PC), differentiated (DC) and terminally
differentiated cells (TC), and the ratio of BCR-ABL over BCR in percent (green curve). Wild-type cells are shown in black, leukaemic cells in blue and
resistant leukaemic cells in red. (A) Imatinib therapy is started at day 0 and leads to a bi-phasic decline of the percentage of leukaemic cells. Leukaemic stem
cells continue to expand at a slow rate. (B) Discontinuation of treatment (broken line) leads to a rapid relapse of leukaemic cells to levels beyond
pretreatment baseline because leukaemic stem cells were not depleted during imatinib therapy. (C) Evolution of resistance leads to an increase in
the percentage of cancer cells. Parameter values are d0¼ 0.003, d1¼ 0.008, d2¼ 0.05, d3¼ 1, ax¼ 0.8, bx¼ 5, cx¼ 100, ry¼ 0.008, ay¼ 2ax, by¼ 2bx,
cy¼ cx, rz¼ 0.023. During therapy, we have ay

0 ¼ ay/100, by
0 ¼ by/750, cy

0 ¼ cy, az¼ ay
0 ¼ ay, bz¼ by

0 ¼ by and cz¼ cy
0 ¼ cy. In (c), we have z0(0)¼ 10 and

u¼ 4.10�8. Figure adapted from Michor et al (2005).
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leukaemic stem cells are not depleted by imatinib and this
chemotherapeutic cannot cure the disease.
Patients can relapse despite continuous therapy owing to the

evolution of resistance (Figure 1C). Thirty patients in our database
developed resistance that could be detected after a variable
duration of successful therapy.

The model

We developed a mathematical model that describes four subpopula-
tions of the haematopoietic system, as suggested by the data: stem
cells, progenitors, differentiated cells and terminally differentiated
cells. This differentiation hierarchy applies to normal, leukaemic and
resistant cells. The abundances of normal stem cells, progenitors,
differentiated and terminally differentiated cells are denoted by x0,
x1, x2 and x3; the respective abundances of leukaemic cells are
denoted by y0, y1, y2 and y3, and those of resistant cells by z0, z1, z2
and z3. Only stem cells have unlimited self-renewal propensities and
can continually replenish the complete differentiation hierarchy. The
BCR-ABL oncogene is present in all leukaemic cells and leads to a
slow clonal expansion of leukaemic stem cells. Furthermore, it
increases the rate at which leukaemic stem cells produce progenitors
and differentiated cells (Michor et al, 2005). The rate constants for
the production of progenitors, differentiated cells and terminally
differentiated cells are given by a, b and c, with appropriate indices
to distinguish between healthy, leukaemic and resistant cell lineages.
Leukaemic stem cells mutate at rate u per cell division to give rise to
resistant stem cells. Stem cells die at rate d0, progenitors at rate d1,
differentiated cells at rate d2 and terminally differentiated cells at
rate d3 per day. Hence, the basic model is given by

Density dependence is achieved by an appropriate declining
function, l(x0). Normal cells remain at their equilibrium
abundances, x0*¼ x0, x1*¼ axx0*/d1, x2*¼ bxx1*/d2 and
x3*¼ cxx2*/d3. Initially, leukaemic stem cells grow exponentially
following y0(t)¼ exp[(ry�d0)t]. Here, we ignore the evolution of
resistance. BCR-ABL is assumed to increase the rate at which
progenitors and differentiated cells are being produced;
hence, ay4az and by4bz. However, imatinib counteracts this
effect by reducing those rates to ay

0oay and by
0oby (Michor et al,

2005).

Model dynamics Figure 2 summarises the dynamic features
of the model. Figure 2A shows the simulation results of imatinib
treatment without resistance starting at day 0. The leukaemic
cell burden declines bi-phasically: terminally differentiated
leukaemic cells decrease at their death rate, d3¼ 1 per day,
until they reach a steady state with differentiated leukaemic
cells, then they track the latters’ disease kinetics. Differentiated
leukaemic cells decline at their death rate, d2¼ 0.05 per day, until
they reach an equilibrium with leukaemic progenitors. Progenitors
decline at their death rate, d1¼ 0.008 per day, until they reach an
equilibrium with leukaemic stem cells. Stem cells themselves are
not depleted by imatinib and continue to expand exponentially
during therapy.

Stop therapy If treatment is discontinued after 1 year (Figure 2B),
then the leukaemic cell load rapidly rises to levels beyond
pretreatment baseline because the leukaemic stem cell abundance
did not decline during therapy. Our mathematical model (Michor

et al, 2005) fitted to in vivo data suggests that imatinib may be
incapable of depleting leukaemic stem cells; however, only three
patients who discontinued imatinib therapy could be analysed
because treatment is stopped very rarely. Once more data of stop
patients becomes available, the theory might have to be revised,
but the conclusion that leukemic stem cells cannot be depleted by
imatinib can safely be drawn based on the available information.
Additionally, previous work has shown that CML stem cells are
insensitive to imatinib in vitro (Graham et al, 2002).

Resistance Evolution of resistance leads to a relapse despite
continuous therapy (Figure 2C). The probability of resistance can
be calculated by considering an exponentially growing leukaemic
stem cell population that produces resistant leukaemic cells at rate
u per cell division. Upon reaching a certain abundance, y0, of
leukaemic stem cells, the probability of having at least one
resistant stem cell is given by P¼ 1�exp (�uy0s), where
s¼ (1þ s)log(1þ 1/s) and s¼ (ay�d0)/d0. This calculation is based
on the assumption that resistant stem cells have the same fitness as
sensitive leukaemic stem cells. The formula for the probability of
resistance for any fitness value and the expected number of
resistant cells is derived in Iwasa et al, 2006.
The probability of resistance increases with the mutation rate, the

number of leukaemic stem cells and the fitness of resistant stem
cells. It also increases with the number of cell divisions that
generated the leukaemia: the larger the number of cell divisions the
higher the risk of mutations, and therefore the higher the
probability of resistance. We can use the deterministic model to
estimate the time until detection of resistance and treatment failure.
These and other related calculations may be extremely helpful in
determining when imatinib therapy ought to be combined with
other therapies, providing a more accurate prognosis for the disease
and directing future research and development efforts.

CONCLUSION

Mathematical modelling of cancer progression and the evolution of
resistance will prove invaluable in the ongoing struggle to develop
new and more effective therapeutic strategies for the treatment of
cancer. The model discussed above provides an improved under-
standing of treatment failure and success, as well as increased
knowledge of the way therapy affects the cancer cell burden over
time. The model also offers predictive power to the course the
disease is likely to take, and therefore supplies both the physician
and the researcher with some of the tools necessary to combat
cancer cell proliferation to the greatest effect.
However, the research outlined above marks only the beginning

of much needed explorations into the mathematical modelling of
such systems. Targeted therapies will certainly play an increasingly
vital role in the future of cancer treatment, particularly as we
continue to accumulate knowledge of the molecular interactions
responsible for tumorigenesis. Many of the dynamic interactions
between targeted agents and cancer cells remain poorly under-
stood. Although much research remains to be carried out in the
realm of molecular biology, these relations will be greatly clarified
by using a mathematical approach to in vivo therapeutic
responses. As the era of targeted cancer therapy progresses and
new drugs are developed, it becomes imperative that more energy
be directed towards a quantitative approach to the analysis of
therapeutic success and failure.
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Healthy Leukemic Resistant

Stemcells
.
x0 ¼ ½lðx0Þ � d0�x0 .

y0 ¼ ½ryð1� uÞ � d0�y0 .
z0 ¼ ðrz � d0Þz0 þ ryy0u

Progenitors
.
x1 ¼ axx0 � d1x1

.
y1 ¼ ayy0 � d1y1

.
z1 ¼ azz0 � d1z1

Diff.cells
.
x2 ¼ bxx1 � d2x2

.
y2 ¼ byy1 � d2y2

.
z2 ¼ bzz1 � d2z2

Term.diff.cells
.
x3 ¼ cxx2 � d3x3

.
y3 ¼ cyy2 � d3y3

.
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