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Mxi1 is a Mad family member that plays a role in cell proliferation and differentiation. To test the role of Mxi1 on
tumorigenesis of glioma cells we transfected a CMV-driven MXI1 cDNA in U87 human glioblastoma cells. Two clones were
isolated expressing MXI1 levels 18- and 3.5-fold higher than wild-type U87 cells (clone U87.Mxi1.14 and U87.Mxi1.22,
respectively). In vivo, U87.Mxi1.14 cells were not tumorigenic in nude mice and delayed development of tumours was
observed with U87.Mxi1.22 cells. In vitro, the proliferation rate was partially and strongly inhibited in U87.Mxi1.22 and
U87.Mxi1.14 cells respectively. The cell cycle analysis revealed a relevant accumulation of U87.Mxi1.14 cells in the G2/M phase.
Interestingly, the expression of cyclin B1 was inhibited to about 60% in U87.Mxi1.14 cells. This inhibition occurs at the
transcriptional level and depends, at least in part, on the E-box present on the cyclin B1 promoter. Consistent with this, the
endogenous Mxi1 binds this E-box in vitro. Thus, our findings indicate that Mxi1 can act as a tumour suppressor in human
glioblastomas through a molecular mechanism involving the transcriptional down-regulation of cyclin B1 gene expression.
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The oncogenic transformation by Myc proteins requires a basic
helix-loop-helix leucine zipper (bHLH-zip)-mediated interaction
with Max, the Myc obligate DNA-binding partner (Dang et al,
1989; Blackwell et al, 1990; Kretzner et al, 1992). Proteins of
the Myc network are essential regulators of cell growth and differ-
entiation (Henriksson and Luscher, 1996). The Mad family
proteins (Ayer et al, 1993; Zervos et al, 1993; Hurlin et al,
1995), among which Mxi1, can antagonize Myc by interacting
with Max. This complex recruits Sin3A or Sin3B transcriptional
repressors, the co-repressor N-CoR, and the histone deacetylase
HDAC1 (Schreiber-Agus et al, 1995; Rao et al, 1996; Alland et
al, 1997; Hassig et al, 1997; Laherty et al, 1997). Direct repression
of the c-Myc promoter by Mxi1 can also take place (Lee and Ziff,
1999).

Because of their molecular function, proteins of the Mad family
are potentially involved in tumour suppression. In particular, a
deficient function of these proteins could contribute to tumorigen-
esis by making available large amounts of Max for c-Myc
activation. Chen et al (1995) have provided evidences for an inhi-
bitory role of Mad1 on malignant gliomas. The recent knock out of
MXI1 in mice has confirmed its role as a tumour suppressor
(Schreiber-Agus et al, 1998; Foley and Eisenman, 1999).

MXI1 gene has been mapped to the chromosome region 10q25,
frequently deleted in glioblastomas (Rasheed et al, 1992; Fults and
Pedone, 1993; Edelhoff et al, 1994; Albarosa et al, 1996). The over-
expression of Mxi1 in glioblastoma cells suppresses cell growth,
inducing an accumulation of the cells in the G2/M phases of the
cell cycle (Wechsler et al, 1997).

The target genes by which Mxi1 exerts its effect on the cell cycle
progression are still not identified. Here we demonstrate that
during the Mxi1-induced G2/M block in glioblastoma cells, the
expression of the master regulatory gene of the G2 progression,
cyclin B1 is down-regulated at transcriptional level, indicating that
cyclin B1 is a target of Mxi1 activity.

MATERIALS AND METHODS

Transfection of U87 cells by a Mxi1 eukaryotic expression
plasmid

Total RNA was prepared after direct lysis of lymphocytes with
Tripure reagent (Roche). Two rounds of reverse transcription were
performed starting from 5 mg of total RNA, using oligo (dT)
primer, other reagents and procedures contained in the cDNA
Cycle Kit from Invitrogen. Four ml of the resulting cDNA,
50 pmoles of each primer, 0.2 mM dNTPs and 2.5 units of either
Taq or HF-Taq DNA polymerase, with the respective buffers from
Roche, were used for two rounds of PCR. The first round was
performed using primers Mxi1-A1 (TAAGGGAGTGCGGAGAGG)
and Mxi1-R (TTAAATACAGGTCCTCTGACCC). The initial dena-
turation at 948C for 5 min was followed by 30 cycles at 948C for
1 min, 558C for 2 min and 728C for 3 min. One ml of the PCR
mixture was subjected to a second round of amplification under
the same conditions using primers Mxi1-A1 and Mxi1-R2b
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(CATGCTGGGTTCTATGAAGAG). The resulting 740 bp fragment
was cloned into pCR3 eukaryotic expression plasmid (Invitrogen)
in both orientations. The sequence of amplified MXI1 cDNA corre-
sponds to wild-type MXI1 except for two nucleotide changes at
codon 178 (GAA to GGA) and 195 (AGT to GGT) predicting,
respectively, a glycine for glutamate and a glycine for serine substi-
tution. These changes, present in the plasmid transfected in the
cells used for 3H incorporation assays, were likely due to PCR
amplification, since they were never found by SSCP analysis of
glioma and lymphocyte DNA of 36 unrelated individuals (G Finoc-
chiaro unpublished data). Moreover they are not placed in the four
regions that are critical for Mxi1 transcriptional activity (SR1
domain, basic region, HLH domain and leucine zipper domain,
aa 1 – 147, ibidem). As assessed by sequence information, the cells
used in the cell counting and colonies formation assays, have been
transfected with a plasmid carrying a wild-type sequence of Mxi1
derived from a different PCR.

The human U87 glioma cell line (ATCC HTB 14), was grown in
Eagle’s medium (EMEM) supplemented with 10% foetal calf
serum, non-essential amino acids, sodium pyruvate, L-glutamine,
streptomycin and penicillin. U87 cells (80% confluent) were lipo-
fected by DOTAP (Roche) using 5 mg of pCR3/Mxi1 purified by
Qiagen tips 100. G418 selection was performed using 300 mg ml71

of active drug (Sigma).
To evaluate MXI1 expression after transfection in U87 cells

MXI1 cDNA was amplified for 35 cycles with primers MXI1-A1
and MXI1-R2b (CATGCTGGGTTCTATGAAGAG) 10/50 ml of
PCR mix were loaded. b-actin was amplified for 25 cycles with
primers ß-Act-F2, ACCAACTGGGACGACATGGA and b-Act-R2,
GTGGTGGTGAAGCTGTAGC and 5/50 ml of PCR mix loaded
together with MXI1 amplified from the same RNA. After agarose
gel electrophoresis the amount of DNA loaded and the MXI1/actin
ratio was evaluated using a Kodak DC40 camera and the Kodak
Digital Science 1D software (Scientific Imaging System, New
Haven, CT, USA).

In vitro experiments

The proliferation assay was performed on wild-type, Mxi1.22 and
Mxi1.14 clones. 5 – 106103 cells have been plated in quintuplicate
in a 96 well culture plate. One mCi of [3H]-thymidine in 100 ml of
culture medium (EMEM) was added to each well 3 – 4 h after
seeding the cells. After 24 h a semi-automated cell harvesting
apparatus was used to lyse cells with water and precipitate the
labelled DNA on glass fibre filters. Filter pads were dried and
counted in a liquid scintillation beta-counter. The proliferation
rate was calculated as fold increases over the value obtained on
day 1. For the cell counting assay the cells have been transfected
with a plasmid carrying a wild-type Mxi1 cDNA both in sense or
antisense orientations. After a selection with 300 mg ml71 of G418
for 2 weeks 26103 were plated in triplicate in a 24-well culture
plate. Cell counting was performed for the subsequent 4 days
by Trypan blue staining. To test colony-forming ability 26102

transfected cells, coming from the same selection as above, were
plated in triplicate in a 100 mM culture plate. After 3 weeks the
medium was removed and colonies were stained with methylene
blue 0.06% and glutaraldehyde 1.25% in Hanks’ Balanced Salt
Solution.

In vivo experiments

Three groups of athymic ‘nude’ mice (females, 20 – 25 g, Charles
River) were used. Six mice were inoculated subcutaneously in
one flank with U87 wild-type cells, six with U87.Mxi1.22 cells
and 11 with U87.Mxi1.14 cells. All inoculations consisted of
56105 cells resuspended in 100 ml of PBS. The tumour size was
defined by calculating the major diameters with a caliper. The
major diameters were multiplied and values given in mm2.

Cell cycle analysis

For each sample 104 events were analyzed by an Epics cytofluori-
meter (Coulter). The cells were stained by propidium iodide
(0.1 mg ml71) and RNase (150 U ml71) was added after permea-
bilization in PBS with 0.2% Triton X. DNA content and cell cycle
distribution were determined using a computer-assisted analysis.

Northern blot analysis

Total RNAs were extracted by the guanidinium thiocynate/phenol
procedure (Sambrook et al, 1989) from U87 wt, U87.Mxi1.22
and U87.Mxi1.14 cell lines. Aliquots (20 mg) of total RNA were
separated on 1% formaldehyde-agarose gel at 50 V for 18 h. Nylon
N+ (Qiabrane) filters for Northern analysis were prepared by capil-
lary transfer. Filters were hybridized with the following probes: (i)
1400 bp fragment from human cyclin B1 cDNA obtained by
BamHI/HindIII digestion of a pCMX plasmid carrying the entire
cyclin B1 cDNA cloned into BamHI/HindIII sites, (ii) 1200 bp
fragment from human cyclin A cDNA obtained by BamHI/HindIII
digestion of a pCMX plasmid carrying the entire cyclin B1 cDNA
cloned into BamHI/HindIII sites, (iii) 740 bp fragment from
human MXI1 cDNA obtained by PCR on the pCR3 expression
vector carrying MXI1 cDNA, (iv) b-actin (Clontech Laboratories
Inc., CA, USA). The hybridization were performed at 428C in a
buffer containing 50% formamide, washed to a final stringency
of 0.56SSC, 0.1% SDS at 658C and autoradiographed at 7808C.
Densitometric analysis of autoradigrams were performed by the
Molecular Analyst program (BioRad, CA, USA).

Western blot analysis

Total-cell lysates were loaded and separated by SDS – PAGE (12%
polyacrylamide) gel and electroblotted onto nitrocellulose. After
staining in 0.2% Ponceau S in 3% TCA, the filter was washed twice
in PBS and protein binding sites blocked in 5% non-fat dried milk
in PBS. The filter was treated with (i) anti cyclin B1 mouse mono-
clonal (33 ng ml71), (ii) cyclin A rabbit polyclonal (33 ng ml71),
(iii) Mxi1 rabbit polyclonal (33 ng ml71), Hsp70 mouse monoclo-
nal (33 ng ml71) antibodies (Santa Cruz Biotechnology, Inc. CA,
USA). After four washes in TBS (150 mM NaCl, 50 mM Tris-
HCl, pH 7.9) the filter was incubated with the secondary antibody
(anti-mouse Ig) conjugated with peroxidase, in 3% BSA/TBS for
1 h at room temperature. The filter was washed four times as
above and Western blots were developed using the ECL procedure
(Roche, Little Chalfont, UK).

Transient transfections and CAT assay

U87, U87.Mxi1.22 and U87.Mxi1.14 cell lines were cultured in
Eagle’s medium (EMEM) supplemented with 10% foetal calf
serum. DNA transfections were performed using calcium phos-
phate precipitation (Graham and Van Der Eb, 1973). In each
60 mm plate, 1.56105 cells were transfected with aliquots of preci-
pitates containing 5 mg of p332B1CAT (Piaggio et al, 1995) or
pmE-box332B1CAT (Farina et al, 1996) and 0.5 mg of cytomegalo-
virus-b-galactosidase (CMV-bgal) plasmid, a control for
transfection efficiency. After 16 h, cells were washed with phos-
phate-buffered saline (PBS) and fresh medium was added. Cells
were harvested 48 h after transfection and CAT activity was assayed
in whole-cell extract as described (Desvergne et al, 1991). The
values were normalized against b-galactosidase activity and protein
contents of the extracts.

Nuclear extracts and electromobility shift assays

Nuclear extracts from U87 cells were performed as described by
Dignam et al (1983). The lysis was performed in the presence of
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the following protease and phosphatase inhibitors: leupeptin
10 mg ml71, pepstatin 4 mg ml71, aprotinin 5 mg ml71, 50 mM

NaF, 1 mM sodium orthovanadate. Electromobility shift assays
were performed as described by Miltenberger et al (1995) with
the following modifications: (i) oligonucleotide was labelled using
the Klenow fragment of DNA polymerase I, (ii) the reaction was
carried out on ice for 30 min and run was performed in
0.56TBE buffer. In supershift experiments were used 100 ng of
anti-Max rabbit polyclonal antibody, 2 mg of anti-Mxi1 rabbit
polyclonal antibody, and 2 mg of anti-Mad2 goat polyclonal anti-
body (all provided by Santa Cruz Biotechnology). The following
oligonucleotides were used as probe and competitor (consensus
sites are underlined): B1 E-box 5’-GGGAGGCAGACCACGTGA-
GAGCCTGG; B1up CCAAT: 5’-CCGCAGCCGCCAATGGGAAG-
GGAGTGA (Farina et al, 1999).

RESULTS

Development of glioblastoma cell lines overexpressing
MXI1 cDNA and analysis of their proliferation rate

U87 cells, a cell line derived from a human glioblastoma, were
stably transfected with a construct carrying MXI1 cDNA. Human
MXI1 cDNA was amplified by RT – PCR on lymphocyte RNA
and inserted in the eukaryotic expression plasmid pCR3, under
the control of the CMV promoter. MXI1 cDNA was also cloned
in the antisense orientation, as verified by restriction site analysis
and this construct was used for control experiments. Liposome-
mediated transfer was used to transfect sense or anti-sense MXI1
cDNAs into U87 cells. Cells transfected by MXI1 cDNA had a
decreased [3H]-thymidine incorporation compared to the controls,
while cells transfected with antisense cDNA behaved like controls.
After 7 – 8 weeks in culture, however, this negative effect on U87
proliferation decreased significantly (compare data obtained 1 and
2 months after transfection in Table 1). To confirm our observation
on a more stable population of transfected cells, 26 clones have
been isolated by limiting dilution. Two of these clones showed,
respectively, high and low-intermediate levels of MXI1 expression
(Figure 1). Clone U87.Mxi1.14 had a MXI1/actin ratio, evaluated
by densitometry of RT – PCR products, 18-fold higher than wild-
type U87 cells (high level of expression). Clone U87.Mxi1.22 had
a MXI1/actin ratio 3.5-fold higher than control (low-intermediate
level of expression). The results of [3H]-thymidine incorporation
of wild-type and MXI1-transfected U87 clones confirmed that
increased Mxi1 expression causes a decreased proliferation rate of
glioma cells at different time points. The incorporation rate of
U87 wild-type cells, 1 week after seeding, was 2.6 times higher than
U87.Mxi1.22 and seven times higher than U87.Mxi1.14, respec-
tively, thus indicating a correlation between the levels of Mxi1
expression and the degree of growth inhibition (Figure 2A).

Cell counting and colony forming ability were performed to
evaluate the different proliferation rate of cells untransfected or

transfected with pCR3/Mxi1 both in sense and antisense orienta-
tions. Results are reported in Figure 2B,C and confirm the
significant decrease of the proliferation rate of glioma cells overex-
pressing MXI1. The number of U87/MXI1sense cells 4 days after
plating was 30% that of untransfected cells and 35% that of
U87/MXI1antisense cells (P50.05). The number of clones of
U87/MXI1sense cells was 25% that of untransfected cells and
22% that of U87/MXI1antisense cells (P50.02).

Mxi1 over-expression inhibits tumorigenesis of U87 cells in
nude mice

The effects of Mxi1 over-expression were studied in vivo, by subcu-
taneous grafting in athymic nude mice of U87 wild-type,
U87.Mxi1.14 and U87.Mxi1.22 cells (Figure 3). U87.Mxi1.22
tumours appeared later and their size was smaller than controls’
(P=0.0032 to P=0.0001 for comparable time points; t-test, two
tails). Strikingly, mice injected with U87.Mxi1.14 cells did not
develop any tumour for more than 1 month, after which only
one animal showed the appearance of a neoplastic mass. One
hundred and twenty days after tumour cell injection, when mice
were sacrificed, 10 out of 11 were still tumour-free. These results
are consistent with in vitro data, indicating that Mxi1 can act as
a suppressor of U87 glioblastomas.

U87 cells with high level of Mxi1 expression accumulate in
the G2/M phase of the cell cycle

To determine whether Mxi1 inhibits cell proliferation inducing a
block in a specific phase of the cell cycle, the DNA content of
U87 wild-type, U87.Mxi1.14 and U87.Mxi1.22 cells was measured
by flow cytometry. Figure 4 shows that 38.6% of U87.Mxi1.14 cells
and 12.3% of wild-type cells, respectively, are in G2/M and that
lower amounts of U87.Mxi1.14 cells are in G1 and S phases
compared to the wild-type U87 (36.4% vs 48.0% and 25% vs
39.7% respectively). U87.Mxi1.22 cells, on the other hand, only
show a little increase of cells in G2/M (16.8% vs 12.3% in wild-type
cells), suggesting that Mxi1 effects are partially dose-dependent.
These results demonstrate that Mxi1 over-expression in U87 glio-
blastoma cells leads to an accumulation in the G2/M phase of
the cell cycle.

Mxi1 inhibits expression of the cyclin B1 gene

In normal cells, the B-type cyclins (B1, B2, and B3) control the G2/
M transition of the cell cycle (Pines and Hunter, 1989; Glotzer et
al, 1991). Cyclin B-type proteins interact with the CDK1 during
the G2 phase, creating an active complex important for the orderly
progression of cell division after DNA synthesis (Draetta et al,
1989; Murray et al, 1989; Pines and Hunter, 1990). Activation of
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Table 1 Effects of transfections of the mxi1 gene on the proliferation
rate of U87 cells

Relative incorporation of [3H]-thymidine

(48 h)

U87 wild-type 1.000
(n=8)

U87.Mxi1 (3 – 4 weeks) 0.565+0.185
(n=4), P=0.0184

U87.Mxi1 (7 – 8 weeks) 0.861+0.092
(n=4), n.s.

U87.Mxi.1.antisense 0.996+0.366
(n=8), n.s.

M U87 10 14 20 22 26

MXI1 cDNA

β actin

Figure 1 RT – PCR of MXI1 and ß-actin cDNAs in U87 cells wild-type
(second lane from left) and transfected by MXI1 cDNA (clones 10, 14,
20, 22 and 26). Molecular weight markers (number VI, Roche) are in the
first lane from left. Clones 14 (high MXI1 expression) and 22 (low-inter-
mediate MXI1 expression) were employed in further experiments.
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CDK1 only occurs when sufficient cyclin B1 protein has been
synthesized (Solomon et al, 1990) and the synthesis of cyclin B1
protein, as for other cyclins, correlates with mRNA accumulation.

To dissect the molecular mechanism through which Mxi1
induces accumulation in the G2/M phase of the cell cycle, we inves-
tigated, in U87 proliferating cells, the expression of cyclin B1 gene
and of cyclin A as control. The level of the two cyclin mRNAs was
evaluated by Northern blot on RNA of U87.Mxi1.14, U87.Mxi1.22

and U87 wild-type cells. MXI1 and beta-actin transcripts were also
analyzed on the same membrane. Figure 5 shows that the amount
of cyclin B1 transcript is decreased in U87.Mxi1.14 cells and is
similar to wild-type cells in U87.Mxi1.22 cells, while the amount
of cyclin A transcript is similar in the three cell population. As eval-
uated by densitometric analysis, the amount of cyclin B1 transcript
is 64% than that of wild-type cells in U87.Mxi1.14 and 86% in
U87.Mxi1.22 cells. In agreement with this, immunoblotting analysis
of these three cell populations showed that the amount of cyclin B1
protein is decreased in clones 14 and 22 (Figure 6). These data
demonstrate that high levels of Mxi1 prevent the accumulation
of cyclin B1 mRNA in proliferating U87 cells, suggesting that the
cell cycle perturbation induced by Mxi1 over-expression depends
on the down-regulation of cyclin B1 expression.

Transcriptional mechanisms are involved in the inhibition
of cyclin B1 expression mediated by Mxi1

Human cyclin B1 mRNA appears at the end of the S phase and its
expression peaks during the G2 phase of the cell cycle (Pines and
Hunter, 1989; Piaggio et al, 1995). The transcriptional level of
regulation is involved in the induction of expression at the end
of the S phase (Cogswell et al, 1995; Hwang et al, 1995; Piaggio
et al, 1995; Katula et al, 1997). It has been previously demonstrated
that the Upstream Stimulatory Factor (USF), binding the E-box
sequence in the promoter of the cyclin B1 gene, is responsible for
transcription induction of this gene at the end of the S phase
(Cogswell et al, 1995). The same E-box also plays a crucial role
as a quiescence responsive element in serum-starved NIH3T3 cells
(Farina et al, 1996). We also found that the over-expression of Max
protein in proliferating cells leads to down-regulation of the cyclin
B1 protein by interacting with the CACGTG E-box located at posi-
tion 7124/7119 in the promoter of the cyclin B1 gene (Farina et
al, 1996). Based on these findings we asked whether Mxi1 could
modulate the expression of the endogenous cyclin B1 gene directly
through the transcriptional inhibition of the cyclin B1 promoter.
To answer this question, we transiently transfected U87,
U87.Mxi1.22, and U87.Mxi1.14 cells, with plasmids carrying the
CAT reporter gene under the control of a cyclin B1 wild-type
promoter fragment (p332B1CAT) or a promoter fragment carrying
a mutated E-box (pmE-box332B1CAT). The activity of
p332B1CAT in U87 wild-type cells was made 100%. As shown in
Figure 7, the activity of p332B1CAT decreases to 63% in
U87.Mxi1.22 cells and to 36% in U87.Mxi1.14 cells. In contrast,
CAT activity of pmE-box332B1CAT does not decrease in Mxi1
over-expressing cells and is similar in the three cell lines. Interest-
ingly, in wild-type cells the activity of the pmE-box332B1CAT is
higher than that of p332B1CAT, thus indicating that a negative
control of the cyclin B1 promoter activity is lost, at least in part,
in the absence of a functional E-box, suggesting a role for endogen-
ous Mxi1. Taken together these results demonstrate that the Mxi1
over-expression in glioblastoma cells inhibits cyclin B1 promoter
activity through the E-box in a dose-dependent fashion, suggesting
that Mxi1 could directly modulate the expression of the endogen-
ous cyclin B1 gene through transcriptional inhibition.

Max/Mxi1 heteridimers bind the E-box present on the
cyclin B1 promoter

We previously demonstrated that the Max protein recognizes the
E-box present on the cyclin B1 promoter (Farina et al, 1996). By
EMSAs we verified the ability of Mxi1 to bind the cyclin B1 E-
box. Electromobility shift assays, performed with U87 nuclear
extracts, reveal one protein complex binding to the radiolabelled
probe, spanning nt 7133 to 7110 in the cyclin B1 promoter
(B1 E-box) (Figure 8). A 200-fold molar excess of unlabelled probe
(Figure 8, lane 6) specifically inhibits the complex, but not a 1000-
fold molar excess of an unrelated probe B1upCCAAT (Farina et al,
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Figure 2 MXI1 decreases the proliferation rate in vitro of U87 cells. (A)
[3H]-thymidine incorporation in U87 wild-type and in Mxi1-transfected
clones 22 and 14, with low and intermediate high levels, respectively, of
Mxi1 expression. Data are the results of two experiments, and each point
was evaluated five times. Values are shown as the folds of increase of [3H]-
thymidine incorporation, over day 1. Standard errors are indicated. (B)
Cells were transfected with pCR/Mxi1 as reported in Materials and Meth-
ods. On day 0, 26103 cells were plated in triplicate in a 24-wells culture
plate and counted after 1, 2, 3 and 4 days. Each point represents the
mean+s.d. of three independent experiments. *P50.05 (Student t-test).
(C) 26102 cells were plated in triplicate in a 100 mm culture plate. After
3 weeks cells were stained and counted as reported in Materials and
Methods. Each point represents the mean+s.d. of three independent
experiments.
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1999) containing a CCAAT box sequence (lane 7). Direct evidence
of Mxi1 binding was obtained through the use of specific anti-
Mxi1 antibodies in the binding reactions. U87 nuclear extracts were
pre-incubated with two different antibodies against the Mxi1
protein. As shown in Figure 8, lanes 3 and 4 both Mxi1 antibodies

interfere, at least in part, with the formation of the complex. As
expected an anti-Max antibody modifies the mobility of the
complex (Figure 8, lane 5). In particular, 2 mg of antibodies against
the Mxi1 protein are necessary to interfere with the formation of
the complex, while only 100 ng of the anti-Max antibody are suffi-
cient to modify the mobility of the complex. This apparent
discrepancy could be explained with a different affinity of the anti-
bodies towards two different proteins and towards different
functional domain of the proteins. Indeed the antibodies against
Mxi1 interfere with the DNA binding, thus indicating that they
bind the DNA binding domain of Mxi1 and competition for the
binding of the probe. Instead, the anti-Max antibody modifies
the mobility of the complex without competition with the binding
of Mxi1 to the probe. Neither anti-Mxi1 nor anti-Max antibodies
completely interfere with the formation or retard the mobility of
the complex. It has been previously demonstrated that USF binds
this E-box (Cogswell et al, 1995; Farina et al, 1996), thus the resi-
dual molecular complex still occurring in the presence of anti-Mxi1
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axes represent the cell number.
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Figure 5 Mxi1 inhibits expression of the cyclin B1 gene. Northern blot
analysis was performed on total RNA extracted from wild-type, Mxi1.22,
and Mxi1.14 U87 cell lines. RNAs were size-fractionated on a 1% agarose
gel, blotted on a nylon membrane, hybridized with 32P-labelled cyclin B1,
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tensity of the bands was quantitated by densitometry.
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and anti-Max antibodies could be due to the ability of USF to bind
this E-box. Altogether, these results provide evidence that, at least

in vitro, Mxi1 recognizes the E-box present on the cyclin B1
promoter.

DISCUSSION

In the present study we describe one molecular mechanism by
which Mxi1 can act as a tumour suppressor in glioblastomas. First,
we demonstrate that Mxi1 over-expression causes an inhibition of
proliferation of U87 glioblastoma cells in vitro due to an accumula-
tion of the cells in the G2/M phase of the cell cycle. A similar
finding was reported by another group (Wechsler et al, 1997).
Furthermore, we also demonstrate that Mxi1 over-expression inhi-
bits tumorigenesis of U87 cells in nude mice. This result is in
agreement with those coming from MXI1-deficient mice that show
increased susceptibility to tumorigenesis (Schreiber-Agus et al,
1998). The investigation of the mxi1 coding sequence in primary
glioblastomas does not identify this gene as a major target on chro-
mosome 10q. Indeed SSCP analysis of 36 tumour DNA failed to
identify mutations (data not shown).

These data imply that the mechanism through which Mxi1
exerts its tumour suppressor function could be of general interest.
We demonstrate here that this mechanism includes the loss of
cyclin B1 accumulation through the inhibition of cyclin B1 promo-
ter activity and the possible consequent accumulation of the cells in
the G2/M phases of the cell cycle. This G2/M accumulation is of
particular interest, considering that over-expression in malignant
gliomas of the other Max interactor, Mad1, induces G1/S arrest
without obvious perturbations of the G2/M progression (Roussel
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Figure 8 Max/Mxi1 heterodimers bind the E-box present on the cyclin
B1 promoter. Gel mobility retardation assays were performed with a
double-stranded, 32P-labelled oligonucleotide, spanning position 7133/
7110, containing the E-box of the cyclin B1 promoter (B1 E-box). Addition
of nuclear extract from U87 cells resulted in a retarded band. A 200-fold
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of the complex. In lanes 3, 4, nuclear extracts were pre-incubated with anti-
Mxi1 antibodies and, in lane 5, with anti-Max antibody.
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et al, 1996). This difference and the observation that Mad1 is
highly expressed only in non proliferating, post-mitotic cells while
Mxi1 is present in cycling cells (Hurlin et al, 1995), suggests that
these two proteins affect cell cycle progression at different phases.

In this study we demonstrate that Mxi1 binds the E-box present
on the cyclin B1 promoter in vitro and that high levels of Mxi1
inhibit the cyclin B1 promoter activity in an E-box dependent
manner in vivo. These results raise the hypothesis that an excess
of Mxi1 protein produces an excess of Mxi1/Max heterodimers that
may compete with USF for the binding to the E-box of cyclin B1
promoter (Cogswell et al, 1995; Farina et al, 1996). Also in this case
the mechanism of action of Mxi1 is different from that of Mad1,
since previous results demonstrated that the inhibitory effect of
Mad1 on the cyclin B1 promoter is E-box independent (Farina et
al, 1996). This diversity confirms that Mxi1 and Mad1 may act
during the cell cycle in pathways involving different molecular
mechanisms.

In conclusion, we have reported that the molecular mechanism
through which Mxi1 can act as an inhibitor of proliferation and

tumorigenesis of U87 glioblastoma cells includes the inhibition of
cyclin B1 promoter activity through the E-box and the possible
consequent loss of cyclin B1 accumulation. Altogether, our results
indicate that Mxi1 mediates the down-regulation of cyclin B1 gene
expression in malignant gliomas suggesting that this gene is a func-
tional target of the tumour suppressor activity of Mxi1.
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