Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Clinical Implications
  • Published:

Clinical Implication

Pharmacogenetic of antirheumatic treatments: clinical implications

Abstract

Preliminary pharmacogenetic data suggest that germline genetic informations might be of value in individualizing disease-modifying antirheumatic drugs (DMARDs) therapy in various autoimmune chronic inflammatory diseases. Either DMARDs small molecules (DMARDs-SM) or DMARDs biological therapies (DMARDs-BT) might be selected for their lower toxicity or better efficacy based on single-nucleotide polymorphisms (SNPs) of genes governing the metabolism of drugs, or the response of immune cells to proinflammatory molecules, or the proinflammatory molecular activity of immune cells. Data available for one DMARDs-SM, methotrexate, suggest that a careful assessment of the SNPs of four enzymes involved in the folate metabolism allow one to construct a genetic index of toxicity (toxicogenetic index) that might be employed in daily practice to find the patient's most at risk. Only the full knowledge of the various gene polymorphisms controlling the phenotypic manifestations of the inflammatory–immunological milieu of each rheumatic disease will allow one to obtain the clear definition of a personalized medicine. Few different cytokine gene SNPs seem to be of importance in determining the susceptibility to diseases, or the aggressiveness of diseases. The role of genetics in affecting a possible clinical response to DMARDs-BT targeting specific inflammatory molecules or their receptors still has to be defined. However, the available data suggest that cytokine (and/or receptors) gene SNPs might indeed play a role in determining the biological effects, hence the clinical effectiveness of DMARDs-BT. Crucial to this aim will be the prospective analysis of clinical benefits and safety on the basis of the at baseline stratification of gene SNPs in each chronic inflammatory rheumatic disease before starting any new DMARDs-SM or DMARDs-BT.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kalow W . Human pharmacogenomics: the development of a science. Hum Genom 2004; 1: 375–380.

    CAS  Google Scholar 

  2. Haga SB, Burke W . Using pharmacogenetics to improve drug safety and efficacy. JAMA 2004; 286: 2270–2279.

    Google Scholar 

  3. van der Helm-van Mil AH, Wesoly JZ, Huizinga TW . Understanding the genetic contribution to rheumatoid arthritis. Curr Opin Rheumatol 2005; 17: 299–304.

    PubMed  Google Scholar 

  4. Fathman CG, Soares L, Chan SM, Utz PJ . An array of possibilities for the study of autoimmunity. Nature 2005; 435: 605–611.

    CAS  PubMed  Google Scholar 

  5. Rioux JD, Abbas AK . Paths to understanding the genetic basis of autoimmune disease. Nature 2005; 435: 584–589.

    CAS  PubMed  Google Scholar 

  6. Bell J . Predicting disease using genomics. Nature 2004; 429: 453–456.

    CAS  PubMed  Google Scholar 

  7. Huizinga TW, Amos CI, Van der Helm-vanMil AH, Chen W, Van Gaalen FA, Jawaheer D et al. Refining the complex rheumatoid arthritis phenotype based on specificity of the HLA-DRB1 shared epitope for antibodies to citrullinated proteins. Arthritis Rheum 2005; 52: 3433–3438.

    CAS  PubMed  Google Scholar 

  8. Wassmuth R, Wagner U . Prognostic use of human leukocyte antigen genotyping for rheumatoid arthritis susceptibility, disease course, and clinical stratification. Rheum Dis Clin N Am 2002; 28: 17–37.

    Google Scholar 

  9. Bridges Jr SL . Genetic markers of treatment response in rheumatoid arthritis. Arthritis Rheum 2004; 50: 1019–1022.

    CAS  PubMed  Google Scholar 

  10. Schmeling H, Biber D, Heins S, Horneff G . Influence of methylenetetrahydrofolate reductase polymorphism on efficacy and toxicity of methotrexate in patients with juvenile idiopathic arthritis. J Rheumatol 2005; 32: 1832–1836.

    CAS  PubMed  Google Scholar 

  11. Ranganathan P, Culverhouse R, Marsh S, Ahluwalia R, Shannon WD, Eisen S et al. Single nucleotide polymorphism profiling across the methotrexate pathway in normal subjects and rheumatoid arthritis. Pharmacogenomics 2004; 5: 559–569.

    CAS  PubMed  Google Scholar 

  12. Kumagai K, Hiyama K, Oyama T, Maeda H, Kohno N . Polymorphisms in the thymidylate synthase and methylenetetrahydrofolate reductase genes and sensitivity to the low-dose methotrexate therapy in patients with rheumatoid arthritis. Int J Mol Med 2003; 11: 593–600.

    CAS  PubMed  Google Scholar 

  13. Dervieux T, Furst D, Lein DO, Capps R, Smith K, Walsh M et al. Polyglutamation of methotrexate with common polymorphisms in reduced folate carrier, aminoimidazole carboxamide ribonucleotide transformylase, and thymidylate synthase are associated with methotrexate effects in rheumatoid arthritis. Arthritis Rheum 2004; 50: 2766–2774.

    CAS  PubMed  Google Scholar 

  14. Weisman MH, Furst DE, Park GS, Kremer JM, Smith KM, Wallace DJ et al. Risk genotypes in folate-dependent enzymes and their association with methotrexate-related side effects in rheumatoid arthritis. Arthritis Rheum 2006; 54: 607–612.

    CAS  PubMed  Google Scholar 

  15. Hider S, Buckley C, Silman AJ, Symmons DP, Bruce IN . Factors influencing response to disease modifying antirheumatic drugs in patients with rheumatoid arthritis. J Rheumatol 2005; 32: 11–16.

    PubMed  Google Scholar 

  16. Watanabe N, Ando K, Yoshida S, Inuzulka S, Kobayashi M, Matusi N et al. Gene expression profile analysis of rheumatoid synovial fibroblast cultures revealing the overexpression of genes responsible for tumor-like growth of rheumatoid synovium. Biochem Biophys Res Commun 2002; 28: 1121–1129.

    Google Scholar 

  17. Erdem CZ, Sarikaya S, Erdem LO, Ozdolap S, Gundogdu S . MR imaging features of foot involvement in ankylosing spondylitis. Eur J Radiol 2005; 53: 110–119.

    PubMed  Google Scholar 

  18. Weyand CM, Goronzy JJ . Ectopic germinal center formation in rheumatoid synovitis. Ann NY Acad Sci 2003; 987: 140–149.

    CAS  PubMed  Google Scholar 

  19. Tsubaki T, Takegawa S, Hanamoto H, Arita N, Kamogawa J, Yamamoto H et al. Accumulation of plasma cells expressing CXCR3 in the synovial sublining regions of early rheumatoid arthritis in association with production of Mig/CXCL9 by synovial fibroblasts. Clin Exp Immunol 2005; 141: 363–371.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Adamopoulos I, Sabokbar A, Wordsorth B, Carr A, Ferguson D, Athanasou N . Synovial fluid macrophages are capable of osteoclast formation and resorption. J Pathol 2006; 208: 35–43.

    CAS  PubMed  Google Scholar 

  21. Milner CM, Campbell RD . Genetic organization of the human MHC class III region. Front Biosci 2001 (Suppl 6): D914–D926.

  22. Ota M, Katsuyama Y, Kimura A, Tuschiya K, Kondo M, Naruse T et al. A second susceptibility gene for developing rheumatoid arthritis in the human MHC is localized within a 70-kb interval telomeric of the TNF genes in the HLA class III region. Genomics 2001; 71: 263–270.

    CAS  PubMed  Google Scholar 

  23. Vos K, Visser H, Schreuder GM, De Vries RR, Zwinderman AH, Breedveld FC et al. Human leukocyte antigen-DQ and DR polymorphisms predict rheumatoid arthritis outcome better than DR alone. Hum Immunol 2001; 62: 1217–1225.

    CAS  PubMed  Google Scholar 

  24. Gregersen PK, Silver J, Winchester RJ . The shared epitope hypothesis: an approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis Rheum 1987; 30: 1205–1213.

    CAS  PubMed  Google Scholar 

  25. Gregersen PK . Teasing apart the complex genetics of human autoimmunity: lessons from rheumatoid arthritis. Clin Immunol 2003; 107: 1–9.

    CAS  PubMed  Google Scholar 

  26. Gao XJ, Olsen NJ, Pincus T, Stastny P . HLA-DR alleles with naturally occurring aminoacid substitutions and risk for development of rheumatoid arthritis. Arthritis Rheum 1990; 33: 939–946.

    CAS  PubMed  Google Scholar 

  27. du Montcel ST, Michou L, Petit-Teixeira E, Osorio J, Lemaire I, Lasbleiz S et al. New classification of HLA-DRB1 alleles supports the shared epitope hypothesis of rheumatoid arthritis susceptibility. Arthritis Rheum 2005; 52: 1063–1068.

    PubMed  Google Scholar 

  28. John S, Shephard N, Liu G, Zeggini E, Cao M, Chen W et al. Whole genome scan in a complex disease, using 11 245 single nucleotide polymorphisms: comparison with microsatellites. Am J Hum Genet 2004; 75: 54–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Williams RC, Jacobsson LT, Knowler WC, del Puente A, Kostyu D, McAuley JE et al. Meta-analysis reveals association between most common class II haplotype in full heritage native Americans and rheumatoid arthritis. Hum Immunol 1995; 42: 90–94.

    CAS  PubMed  Google Scholar 

  30. Wagner U, Kaltenhauser S, Sauer H, Arnold S, Seidel W, Hantzschel H et al. HLA markers and prediction of clinical course and outcome in rheumatoid arthritis. Arthritis Rheum 1997; 40: 341–351.

    CAS  PubMed  Google Scholar 

  31. Jawaheer D, Seldin MF, Amos CI, Chen WV, Shigeta R, Etzel C . The North American Consortium. Screening the genome for rheumatoid arthritis susceptibility genes: a replication study and combined analysis of 512 multicase families. Arthritis Rheum 2003; 48: 906–916.

    CAS  PubMed  Google Scholar 

  32. Jawaheer D, Li W, Graham RR, Chen W, Damle A, Xiao X et al. Dissecting the genetic complexity of the association between human leukocyte antigens and rheumatoid arthritis. Am J Hum Genet 2002; 71: 585–594.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Gregersen PK . Pathways to gene identification in rheumatoid arthritis: PTPN22 and beyond. Immunol Rev 2005; 204: 74–86.

    CAS  PubMed  Google Scholar 

  34. Goeb V, Dieude P, Vittecoq O, Mejjad O, Menard JF, Thomas M et al. Association between the TNFRII 196 R allele and diagnosis of rheumatoid arthritis. Arthritis Res Ther 2005; 7: 1056–1062.

    Google Scholar 

  35. Tolusso B, Sacco S, Gremese E, La Torre G, Tomietto P, Ferraccioli GF . Relationship between the tumor necrosis factor receptor II(TNF-R II) gene polymorphism and s-TNF.RII plasma levels in healthy controls and in rheumatoid arthritis. Hum Immunol 2004; 65: 1420–1426.

    CAS  PubMed  Google Scholar 

  36. Carreira PE, Gonzales-Crespo MR, Ciruelo E, Pablos JL, Santiago B, Gomez-Camara A et al. Polymorphism of the interleukin-1 receptor antagonist gene. Arthritis Rheum 2005; 52: 3015–3019.

    CAS  PubMed  Google Scholar 

  37. van der Linden SJ, Van der Heijde D . Clinical aspects, outcome assessment, and management of ankylosing spondylitis and postenteric reactive arthritis. Curr Opin Rheumatol 2000; 12: 263–268.

    CAS  PubMed  Google Scholar 

  38. Ekman P, Kirveskari J, Granfors K . Modification of disease outcome in Salmonella-infected patients by HLA-B27. Arthritis Rheum 2000; 43: 1527–1534.

    CAS  PubMed  Google Scholar 

  39. Brown MA, Pile KD, Kennedy LG, Campbell D, Andrew L, March R et al. A genome-wide screen for susceptibility loci in ankylosing spondylitis. Arthritis Rheum 1998; 41: 588–595.

    CAS  PubMed  Google Scholar 

  40. Brown MA, Brophy S, Bradbury L, Hamersma J, Timms A, Laval S et al. Identification of major loci controlling clinical manifestations of ankylosing spondylitis. Arthritis Rheum 2003; 48: 2234–2239.

    PubMed  Google Scholar 

  41. Brown MA, Kennedy LG, MacGregor AJ, Darke C, Duncan E, Shatford JL . Susceptibility to ankylosing spondylitis in twins: the role of genes, HLA and the environment. Arthritis Rheum 1997; 40: 1823–1828.

    CAS  PubMed  Google Scholar 

  42. Hohler T, Schaper T, Schneider PM, Krummenauer F, Rittner C, Meyer zum Buschenfelde KH et al. No primary association between LMP2 polymorphisms and extraspinal manifestations in spondyloarthropathies. Ann Rheum Dis 1997; 56: 741–743.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang G, Luo J, Bruckel J, Weisman MA, Schumacher HR, Khan MA et al. Genetic studies in familial ankylosing spondylitis susceptibility. Arthritis Rheum 2004; 50: 2246–2254.

    CAS  PubMed  Google Scholar 

  44. Timms AE, Crane AM, Sims AM, Cordell HJ, Bradbury LA, Abbott A et al. The interleukin 1 gene cluster contains a major susceptibility locus for ankylosing spondylitis. Am J Hum Genet 2004; 75: 587–595.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Beyeler C, Armstrong M, Bird HA, Idle JR, Daly AK . Relationship between genotype for the cytochrome P450 CYP2D6 and susceptibility to ankylosing spondylitis and rheumatoid arthritis et. Ann Rheum Dis 1996; 55: 66–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Brown MA, Edwards S, Hoyle E, Campbell S, Laval S, Daly AK et al. Polymorphisms of the CYP2D6 gene increase susceptibility to ankylosing spondylitis. Hum Mol Genet 2000; 9: 1563–1566.

    CAS  PubMed  Google Scholar 

  47. O'Dell J, Nepom BS, Haire C, Gersuk VH, Gaur L, Moore GF et al. HLA-DRB1 typing in rheumatoid arthritis: predicting response to specific treatments. Ann Rheum Dis 1998; 57: 209–213.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Ferraccioli GF, Gremese E, Tomietto P, Favret G, Damato R, Di Poi E . Analysis of improvements, full responses, remission and toxicity in rheumatoid patients treated with step-up combination therapy (methotrexate, cyclosporin A, sulphasalazine) or monotherapy for three years. Rheumatology 2002; 41: 892–898.

    CAS  PubMed  Google Scholar 

  49. Gonzales-Gay MA, Hajeer AH, Garcia-Porrua C, Dababneh A, Thomson W, Ollier WE et al. Patients chosen for treatment with cyclosporine because of severe rheumatoid arthritis are more likely to carry HLA-DRB1 shared epitope alleles and have earlier disease onset. J Rheumatol 2002; 29: 271–275.

    Google Scholar 

  50. Criswell LA, Lum RF, Turner KN, Woehl B, Zhu Y, Wang J et al. The influence of genetic variation in the HLA DRB1 and LTA.TNF regions on the response to treatment of early rheumatoid arthritis with methotrexate or etanercept. Arthritis Rheum 2004; 50: 2750–2756.

    CAS  PubMed  Google Scholar 

  51. Martinez A, Salido M, Bonilla G, Pascual-Salcedo D, Fernandez-Arquero M, de Miguel S et al. Association of the major histocompatibility complex with response to infliximab therapy in rheumatoid arthritis patients. Arthritis Rheum 2004; 50: 1077–1082.

    CAS  PubMed  Google Scholar 

  52. Newton JL, Harney SM, Timms AE, Rockett K, Darke C, Wordsworth BP et al. Dissection of class III major histocompatibility complex haplotypes associated with rheumatoid arthritis. Arthritis Rheum 2004; 50: 2122–2129.

    CAS  PubMed  Google Scholar 

  53. Rudwailet M, Siegert S, Yin Z, Eick J, Thiel A, Radbruch A et al. Low T cell production of TNFa and IFNg in ankylosing spondylitis: its relation to HLA-B27 and influence of the TNF-308 gene polymorphism. Ann Rheum Dis 2001; 60: 36–42.

    Google Scholar 

  54. Keller C, Webb A, Davis J . Cytokines in the seronegative spondyloarthropathies and their modification by TNF blockade: a brief report and literature review. Ann Rheum Dis 2003; 62: 1128–1132.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Braun J, Baraliakos X, Brandt J, Sieper J . Therapy of ankylosing spondylitis. Scand J Rheumatol 2005; 34: 178–190.

    CAS  PubMed  Google Scholar 

  56. Barrera P, Joosten LA, Den Broeder AA, van de Putte LB, van Riel PL, van den Berg WB . Effects of treatment with a fully human anti-tumor necrosis factor alpha monoclonal antibody on the local and systemic homeostasis of interleukin 1 and TNF alpha in patients with rheumatoid arthritis. Ann Rheum Dis 2001; 60: 660–669.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Elkayam O, Yaron I, Shirazi I, Yaron M, Caspi D . Serum levels of IL10, IL6, IL1Ra and sIL2R in patients with psoriatic arthritis. Rheumatol Int 2000; 19: 101–105.

    CAS  PubMed  Google Scholar 

  58. Partsh G, Wagner E, Leeb BF, Broll H, Dunky A, Smolen JS . T cell derived cytokines in psoriatic arthritis synovial fluid. Ann Rheum Dis 1998; 57: 691–693.

    Google Scholar 

  59. Danning CL, Illei GG, Hitchon C, Greer MR, Boumpas DT, McInnes IB . Macrophage derived cytokine and nuclear factor kB 65 expression in synovial membrane and skin of patients with psoriatic arthritis. Arthritis Rheum 2000; 43: 1244–1256.

    CAS  PubMed  Google Scholar 

  60. Gratacos J, Collado A, Filella X, Sanmarti R, Canete J, Llena J et al. Serum cytokines (IL6, TNFα, IL1β, IFNγ) in ankylosing spondylitis: a close correlation between serum IL6 levels and disease activity and severity. Br J Rheumatol 1994; 33: 927–931.

    CAS  PubMed  Google Scholar 

  61. Claudepierre P, Rymer JC, Authier FJ, Allanore Y, Larget-Piet B, Gherardi R et al. A relationship between TGFβ1 or IL6 plasma levels and clinical features of spondyloarthropathies. Br J Rheumatol 1997; 36: 400–401.

    CAS  PubMed  Google Scholar 

  62. Yin Z, Braun J, Neure L, Wu P, Liu L, Eggens U et al. Crucial role of interleukin-10/inetrelukin12 balance in the regulation of the type 2T helper cytokine response in reactive arthritis. Arthritis Rheum 1997; 40: 1788–1797.

    CAS  PubMed  Google Scholar 

  63. Braun J, Yin Z, Spiller I, Siegert S, Rudwaleit M, Liu L et al. Low secretion of tumor necrosis factor alpha, but not other TH1 or TH2 cytokines, by peripheral blood mononuclear cells correlates with chronicity in reactive arthritis. Arthritis Rheum 1999; 42: 2039–2044.

    CAS  PubMed  Google Scholar 

  64. Butrimiene I, Jarmalaite S, Ranceva J, Venalis A, Jasiuleviciute L, Zvirbliene A . Different cytokine profiles in patients with chronic and acute reactive arthritis. Rheumatology 2004; 43: 1300–1304.

    CAS  PubMed  Google Scholar 

  65. Gladman DD . Established criteria for disease controlling drugs in ankylosing spondylitis. Ann Rheum Dis 2003; 62: 793–794.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Mease PJ . Cytokine blockers in psoriatic arthritis. Ann Rheum Dis 2001; 60 (Suppl): 37–40.

    Google Scholar 

  67. Hohler T, Marker-Hermann E . Psoriatic arthritis: clinical aspects, genetics and the role of T cells. Curr Opin Rheumatol 2001; 13: 273–279.

    CAS  PubMed  Google Scholar 

  68. Kaluza W, Reuss E, Grossmann S, Hug R, Schopf RE, Galle PR et al. Different transcriptional activity and in vitro TNF alpha production in psoriasis patients carrying the TNF alpha 238A promoter polymorphism. J Invest Dermatol 2000; 114: 1180–1183.

    CAS  PubMed  Google Scholar 

  69. Hohler T, Kruger A, Schneider PM, Schopf RE, Knop J, Rittner C . A TNF alpha promoter polymorphism is associated with juvenile onset psoriasis and psoriatic arthritis. J Invest Dermatol 1997; 109: 562–565.

    CAS  PubMed  Google Scholar 

  70. Arias AI, Giles B, Eiermann TH, Sterry W, Pandey JP . Tumor necrosis factor-alpha gene polymorphism in psoriasis. Exp Clin Immunogenet 1997; 14: 118–122.

    CAS  PubMed  Google Scholar 

  71. Al-Heresh AM, Proctor J, Jones SM, Dixey J, Cox B, Welsh K et al. Tumor necrosis factor alpha polymorphism and the HLA-Cw*0602 allele in psoriatic arthritis. Rheumatology 2002; 41: 525–530.

    CAS  PubMed  Google Scholar 

  72. Mossner R, Kingo K, Kleensang A, Kruger U, Konig IR, Silm H et al. Association of TNF-238 and -308 promoter polymorphisms with psoriasis vulgaris and psoriatic arthritis but not with pustulosis palmoplantaris. J Invest Dermatol 2005; 124: 282–284.

    PubMed  Google Scholar 

  73. Kaijzel EL, Brinkman BM, van Krugten MV, Smith L, Huizinga TW, Verjans GM et al. Polymorphism within the tumor necrosis factor alpha (TNF) promoter region in patients with ankylosing spondylitis. Hum Immunol 1999; 60: 140–144.

    CAS  PubMed  Google Scholar 

  74. Kaijzel EL, Van Krugten MV, Brinkman BM, Huizinga TW, van der Straaten T, Hazes JM et al. Functional analysis of a human tumor necrosis (TNF-alpha) promoter polymorphism related to joint damage in rheumatoid arthritis. Mol Med 1998; 4: 724–733.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Fraile A, Nieto A, Beraum Y, Vinasco J, Mataran L, Martin J . Tumor necrosis factor gene polymorphisms in ankylosing spondylitis. Tissue Antigens 1998; 51: 386–390.

    CAS  PubMed  Google Scholar 

  76. Winchester R . Psoriatic arthritis and the spectrum of syndromes related to the SAPHO (synovitis, acne, pustulosis, hyperostosis and osteitis) syndrome. Curr Opin Rheumatol 1999; 11: 251–256.

    CAS  PubMed  Google Scholar 

  77. Balding J, Kane D, Livingstone W, Mynett-Johnson L, Bresnihan B, Smith O et al. Cytokine gene polymorphisms: association with psoriatic arthritis susceptibility and severity. Arthritis Rheum 2003; 48: 1408–1413.

    CAS  PubMed  Google Scholar 

  78. McGarry F, Walker R, Sturrock R, Field M . The −308.1 polymorphism in the promoter region of the tumor necrosis factor gene is associated with ankylosing spondylitis independent of HLA-B27. J Rheumatol 1999; 26: 1110–1116.

    CAS  PubMed  Google Scholar 

  79. Carter N, Williamson L, Kennedy LG, Brown MA, Wordsworth BP . Susceptibility to ankylosing spondylitis. Rheumatology 2000; 39: 445.

    CAS  PubMed  Google Scholar 

  80. Field M . Tumor necrosis factor polymorphisms in rheumatic diseases. Q J Med 2001; 94: 237–246.

    CAS  Google Scholar 

  81. Fabris M, Tolusso B, Di Poi E, Assaloni R, Sinigaglia L, Ferraccioli G . Tumor necrosis factor-alpha receptor II polymorphism in patients from Southern Europe with mild-moderate and severe rheumatoid arthritis. J Rheumatol 2002; 29: 1847–1850.

    CAS  PubMed  Google Scholar 

  82. Padyukov L, Lampa J, Heimbürger M, Ernstam S, Cederholm T, Lundkvist I et al. Genetic markers for the efficacy of tumor necrosis factor blocking therapy in rheumatoid arthritis. Ann Rheum Dis 2003; 62: 526–529.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Martinez A, Salido M, Bonilla G, Pascual-Salcedo D, Fernandez-Arquero M, de Miguel S et al. Association of the major histocompatibility complex with response to Infliximab therapy in rheumatoid arthritis patients. Arthritis Rheum 2004; 50: 1077–1082.

    CAS  PubMed  Google Scholar 

  84. Cuchacovich M, Ferreira L, Aliste M, Soto L, Cuenca J, Cruzat A et al. Tumor necrosis factor-a (TNF-a) levels and influence of -308TNF-a promoter polymorphism on the responsiveness to infliximab in patients with rheumatoid arthritis. Scand J Rheumatol 2004; 33: 228–232.

    CAS  PubMed  Google Scholar 

  85. Criswell LA, Lum RF, Turner KN, Woehl B, Zhu Y, Wang J et al. The influence of genetic variation in the HLA-DRB1 and LTA-TNF regions on the response to treatment of early rheumatoid arthritis with methotrexate or etanercept. Arthitis Rheum 2004; 50: 2750–2756.

    CAS  Google Scholar 

  86. Fonseca JE, Carvalho T, Cruz M, Nero P, Sobral M, Mourão AF et al. Polymorphism at position −308 of the tumor necrosis factor α gene and rheumatoid arthritis pharmacogenetics. Ann Rheum Dis 2005; 64: 793–794.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Kang CP, Lee KW, Yoo DH, Kang C, Bae SC . The influence of a polymorphism at position −857 of the tumor necrosis factor α gene on clinical response to etanercept therapy in rheumatoid arthritis. Rheumatology 2005; 44: 547–552.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The study was supported by Grants obtained from the Regione Friuli Venezia Giulia, from the Ministry of Education and the Ministry of Public Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Ferraccioli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferraccioli, G., Tolusso, B. & De Santis, M. Pharmacogenetic of antirheumatic treatments: clinical implications. Pharmacogenomics J 7, 2–9 (2007). https://doi.org/10.1038/sj.tpj.6500396

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.tpj.6500396

Keywords

Search

Quick links