Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

A vulnerability locus to multiple sclerosis maps to 7p15 in a region syntenic to an EAE locus in the rat

Abstract

Multiple sclerosis (MS) is a chronic immune-mediated demyelinating disease of the central nervous system. Evidence from family studies indicates a strong genetic component. Despite many studies of candidate genes, only an association with the HLA-DRB1*1501-DQB1*0602 haplotype has been generally detected, and HLA linkage established by transmission disequilibrium testing. A genome-wide scan revealed suggestive linkage of MS with markers on chromosome 7p15 in HLA-DR15-nonsharing British families, in a region syntenic to a locus predisposing to experimental autoimmune encephalomyelitis in the rat. We therefore tested the 7p15 region as a candidate region for genetic susceptibility to MS in 104 French families with at least two affected siblings. We found evidence suggestive of a predisposing locus in families in which only one affected sibling or none of them carry the HLA-DR15 allele. Comparison of the results of the British and French groups suggests that the region of interest can be narrowed to a 2.45-cM interval.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Sawcer S, Goodfellow PN, Compston A . The genetic analysis of multiple sclerosis. Trends Genet 1997; 13: 234–239.

    Article  CAS  Google Scholar 

  2. Olerup O, Hillert J . HLA class II-associated genetic susceptibility in multiple sclerosis: a critical evaluation. Tissue Antigens 1991; 38: 1–15.

    Article  CAS  Google Scholar 

  3. Yaouanq J, Semana G, Eichenbaum S et al. Evidence for linkage disequilibrium between HLA-DRB1 gene and multiple sclerosis. The French Research Group on Genetic Susceptibility to MS. Science 1997; 276: 664–665.

    Article  CAS  Google Scholar 

  4. Swanborg RH . Experimental autoimmune encephalomyelitis in rodents as a model for human demyelinating disease. Clin Immunol Immunopathol 1995; 77: 4–13.

    Article  CAS  Google Scholar 

  5. Kuokkanen S, Sundvall M, Terwilliger JD et al. A putative vulnerability locus to multiple sclerosis maps to 5p14–p12 in a region syntenic to the murine locus Eae2. Nat Genet 1996; 13: 477–480.

    Article  CAS  Google Scholar 

  6. Roth MP, Viratelle C, Dolbois L et al. A genome-wide search identifies two susceptibility loci for experimental autoimmune encephalomyelitis on rat chromosomes 4 and 10. J Immunol 1999; 162: 1917–1922.

    CAS  PubMed  Google Scholar 

  7. Sawcer S, Jones HB, Feakes R et al. A genome screen in multiple sclerosis reveals susceptibility loci on chromosome 6p21 and 17q22. Nat Genet 1996; 13: 464–468.

    Article  CAS  Google Scholar 

  8. Chataway J, Feakes R, Coraddu F et al. The genetics of multiple sclerosis: principles, background and updated results of the United Kingdom systematic genome screen. Brain 1998; 121: 1869–1887.

    Article  Google Scholar 

  9. Goodkin DE, Doolittle TH, Hauser SS et al. Diagnostic criteria for multiple sclerosis research involving multiply affected families. Arch Neurol 1991; 48: 805–807.

    Article  CAS  Google Scholar 

  10. Roth MP, Dolbois L, Borot N et al. Three highly polymorphic microsatellites at the human myelin oligodendrocyte glycoprotein locus, 100 kb telomeric to HLA-F. Characterization and relation to HLA haplotypes. Hum Immunol 1995; 43: 276–282.

    Article  CAS  Google Scholar 

  11. Abecasis GR, Cherny SS, Cookson WO, Cardon LR . Merlin—rapid analysis of dense genetic maps using sparse gene flow trees. Nat Genet 2002; 30: 97–101.

    Article  CAS  Google Scholar 

  12. Lander E, Kruglyak L . Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet 1995; 11: 241–247.

    Article  CAS  Google Scholar 

  13. Xu C, Dai Y, Fredrikson S, Hillert J . Association and linkage analysis of candidate chromosomal regions in multiple sclerosis: indication of disease genes in 12q23 and 7ptr–15. Eur J Hum Genet 1999; 7: 110–116.

    Article  CAS  Google Scholar 

  14. D'Alfonso S, Nistico L, Zavattari P et al. Linkage analysis of multiple sclerosis with candidate region markers in Sardinian and Continental Italian families. Eur J Hum Genet 1999; 7: 377–385.

    Article  CAS  Google Scholar 

  15. Martin ER, Monks SA, Warren LL, Kaplan NL . A test for linkage and association in general pedigrees: the pedigree disequilibrium test. Am J Hum Genet 2000; 67: 146–154.

    Article  CAS  Google Scholar 

  16. Martin ER, Bass MP, Kaplan NL . Correcting for a potential bias in the pedigree disequilibrium test. Am J Hum Genet 2001; 68: 1065–1067.

    Article  CAS  Google Scholar 

  17. Martin ER, Bass MP, Hauser ER . A genotype-based association test for general pedigrees: the geno-PDT. Am J Hum Genet 2002; 71 (Suppl): 573 (Abstr. 2365).

    Google Scholar 

  18. Hugot JP, Chamaillard M, Zouali H et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 2001; 411: 599–603.

    Article  CAS  Google Scholar 

  19. Eugster HP, Frei K, Kopf M, Lassmann H, Fontana A . IL-6-deficient mice resist myelin oligodendrocyte glycoprotein-induced autoimmune encephalomyelitis. Eur J Immunol 1998; 28: 2178–2187.

    Article  CAS  Google Scholar 

  20. Gijbels K, Brocke S, Abrams JS, Steinman L . Administration of neutralizing antibodies to interleukin-6 (IL-6) reduces experimental autoimmune encephalomyelitis and is associated with elevated levels of IL-6 bioactivity in central nervous system and circulation. Mol Med 1995; 1: 795–805.

    Article  CAS  Google Scholar 

  21. Padberg F, Feneberg W, Schmidt S et al. CSF and serum levels of soluble interleukin-6 receptors (sIL-6R and sgp130), but not of interleukin-6 are altered in multiple sclerosis. J Neuroimmunol 1999; 99: 218–223.

    Article  CAS  Google Scholar 

  22. Navikas V, Matusevicius D, Soderstrom M et al. Increased interleukin-6 mRNA expression in blood and cerebrospinal fluid mononuclear cells in multiple sclerosis. J Neuroimmunol 1996; 64: 63–69.

    Article  CAS  Google Scholar 

  23. Bedoui S, Miyake S, Lin Y et al. Neuropeptide Y (NPY) suppresses experimental autoimmune encephalomyelitis: NPY(1) receptor-specific inhibition of autoreactive Th1 responses in vivo. J Immunol 2003; 171: 3451–3458.

    Article  CAS  Google Scholar 

  24. Maeda K, Yasuda M, Kaneda H, Maeda S, Yamadori A . Cerebrospinal fluid (CSF) neuropeptide Y- and somatostatin-like immunoreactivities in man. Neuropeptides 1994; 27: 323–332.

    Article  CAS  Google Scholar 

  25. Kong A, Cox NJ . Allele-sharing models: LOD scores and accurate linkage tests. Am J Hum Genet 1997; 61: 1179–1188.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the patients and their families, without whom this study would not have been possible. This work was supported by grants from ARSEP, LFSEP, AFM, and FRM (Programme Action Recherche Santé 2000).

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to M-P Roth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coppin, H., Ribouchon, MT., Fontaine, B. et al. A vulnerability locus to multiple sclerosis maps to 7p15 in a region syntenic to an EAE locus in the rat. Genes Immun 5, 72–75 (2004). https://doi.org/10.1038/sj.gene.6364038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gene.6364038

Keywords

This article is cited by

Search

Quick links