Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Segregation of HLA/TNF region is linked to leprosy clinical spectrum in families displaying mixed leprosy subtypes

Abstract

Each year an estimated 600 000 new leprosy cases are diagnosed worldwide. The spectrum of the disease varies widely from limited tuberculoid forms to extensive lepromatous forms. A measure of the risk to develop lepromatous forms of leprosy is provided by the extent of skin reactivity to lepromin (Mitsuda reaction). To address a postulated oligogenic control of leprosy pathogenesis, we investigated in the present study linkage of leprosy susceptibility, leprosy clinical subtypes, and extent of the Mitsuda reaction to six chromosomal regions carrying known or suspected leprosy susceptibility loci. The only significant result obtained was linkage of leprosy clinical subtype to the HLA/TNF region on human chromosome 6p21 (Pcorrected=0.00126). In addition, we established that within the same family different HLA/TNF haplotypes segregate into patients with different leprosy subtypes directly demonstrating the importance of this genome region for the control of clinical leprosy presentation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Jacobson RR, Krahenbuhl JL . Leprosy. Lancet 1999; 353: 655–660.

    Article  CAS  PubMed  Google Scholar 

  2. WHO. Leprosy—global situation. Weekly Epidemiol Rec 2000; 75: 226–231.

  3. Ridley DS, Jopling WH . Classification of leprosy according to immunity. A five-group system. Int J Lepr Other Mycobacter Dis 1966; 34: 255–273.

    CAS  Google Scholar 

  4. Alcais A, Sanchez FO, Thuc NV et al. Granulomatous reaction to intradermal injection of lepromin (Mitsuda reaction) is linked to the human NRAMP1 gene in Vietnamese leprosy sibships. J Infect Dis 2000; 181: 302–308.

    Article  CAS  PubMed  Google Scholar 

  5. Casanova JL, Abel L . Genetic dissection of immunity to mycobacteria: The human model. Annu Rev Immunol 2002; 20: 581–620.

    Article  CAS  PubMed  Google Scholar 

  6. Chakravarti MR, Vogel F . A twin study on leprosy. In: Becker PE (ed). Topics in Human Genetics. Georg Thieme Verlag: Stuttgart, 1973; pp. 1–24.

    Google Scholar 

  7. Abel L, Vu DL, Oberti J et al. Complex segregation analysis of leprosy in southern Vietnam. Genet Epidemiol 1995; 12: 63–82.

    Article  CAS  PubMed  Google Scholar 

  8. Meyer CG, May J, Stark K . Human leukocyte antigens in tuberculosis and leprosy. Trends Microbiol 1998; 6: 148–154.

    Article  CAS  PubMed  Google Scholar 

  9. Abel L, Sanchez FO, Oberti J et al. Susceptibility to leprosy is linked to the human NRAMP1 gene. J Infect Dis 1998; 177: 133–145.

    Article  CAS  PubMed  Google Scholar 

  10. Bellamy R, Ruwende C, Corrah T et al. Variations in the NRAMP1 gene and susceptibility to tuberculosis in West Africans. N Engl J Med 1998; 338: 640–644.

    Article  CAS  PubMed  Google Scholar 

  11. Greenwood CM, Fujiwara TM, Boothroyd LJ et al. Linkage of tuberculosis to chromosome 2q35 loci, including NRAMP1, in a large aboriginal Canadian family. Am J Hum Genet 2000; 67: 405–416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gao PS, Fujishima S, Mao XQ et al. Genetic variants of NRAMP1 and active tuberculosis in Japanese populations. International Tuberculosis Genetics Team. Clin Genet 2000; 58: 74–76.

    Article  CAS  PubMed  Google Scholar 

  13. Siddiqui MR, Meisner S, Tosh K et al. A major susceptibility locus for leprosy in India maps to chromosome 10p13. Nature Genet 2001; 27: 439–441.

    Article  CAS  PubMed  Google Scholar 

  14. Roy S, Frodsham A, Saha B et al. Association of vitamin D receptor genotype with leprosy type. J Infect Dis 1999; 179: 187–191.

    Article  CAS  PubMed  Google Scholar 

  15. de Vries RR, Mehra NK, Vaidya MC et al. HLA-linked control of susceptibility to tuberculoid leprosy and association with HLA-DR types. Tissue Antigens 1980; 16: 294–304.

    Article  CAS  PubMed  Google Scholar 

  16. Mehra NK . Role of HLA linked factors in governing susceptibility to leprosy and tuberculosis. Trop Med Parasitol 1990; 41: 352–354.

    CAS  PubMed  Google Scholar 

  17. Zerva L, Cizman B, Mehra NK et al. Arginine at positions 13 or 70-71 in pocket 4 of HLA-DRB1 alleles is associated with susceptibility to tuberculoid leprosy. J Exp Med 1996; 183: 829–836.

    Article  CAS  PubMed  Google Scholar 

  18. Roy S, McGuire W, Mascie-Taylor CG et al. Tumor necrosis factor promoter polymorphism and susceptibility to lepromatous leprosy. J Infect Dis 1997; 176: 530–532.

    Article  CAS  PubMed  Google Scholar 

  19. Rajalingam R, Singal DP, Mehra NK . Transporter associated with antigen-processing (TAP) genes and susceptibility to tuberculoid leprosy and pulmonary tuberculosis. Tissue Antigens 1997; 49: 168–172.

    Article  CAS  PubMed  Google Scholar 

  20. Roche PW, Theuvenet WJ, Britton WJ . Risk factors for type-1 reactions in borderline leprosy patients. Lancet 1991; 338: 654–657.

    Article  CAS  PubMed  Google Scholar 

  21. Jepson A, Banya W, Sisay-Joof F et al. Quantification of the relative contribution of major histocompatibility complex (MHC) and non-MHC genes to human immune responses to foreign antigens. Infect Immun 1997; 65: 872–876.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Marquet S, Abel L, Hillaire D et al. Genetic localization of a locus controlling the intensity of infection by Schistosoma mansoni on chromosome 5q31–q33. Nature Genet 1996; 14: 181–184.

    Article  CAS  PubMed  Google Scholar 

  23. Garcia A, Marquet S, Bucheton B et al. Linkage analysis of blood Plasmodium falciparum levels: interest of the 5q31–q33 chromosome region. Am J Trop Med Hyg 1998; 58: 705–709.

    Article  CAS  PubMed  Google Scholar 

  24. Shaw MA, Donaldson IJ, Collins A et al. Association and linkage of leprosy phenotypes with HLA class II and tumour necrosis factor genes. Genes Immun 2001; 2: 196–204.

    Article  CAS  PubMed  Google Scholar 

  25. Fine PE, Wolf E, Pritchard J et al. HLA-linked genes and leprosy: a family study in Karigiri, South India. J Infect Dis 1979; 140: 152–161.

    Article  CAS  PubMed  Google Scholar 

  26. van Eden W, Gonzalez NM, de Vries RR, Convit J, van Rood JJ . HLA-linked control of predisposition to lepromatous leprosy. J Infect Dis 1985; 151: 9–14.

    Article  CAS  PubMed  Google Scholar 

  27. de Vries RR, Fat RF, Nijenhuis LE, van Rood JJ . HLA-linked genetic control of host response to Mycobacterium leprae. Lancet 1976; 2: 1328–1330.

    Article  CAS  PubMed  Google Scholar 

  28. Dessoukey MW, el-Shiemy S, Sallam T . HLA and leprosy: segregation and linkage study. Int J Dermatol 1996; 35: 257–264.

    Article  CAS  PubMed  Google Scholar 

  29. Xu KY, de Vries RR, Fei HM et al. HLA-linked control of predisposition to lepromatous leprosy. Int J Lepr Other Mycobacter Dis 1985; 53: 56–63.

    CAS  Google Scholar 

  30. Languillon J . Classification immunologique de la lepre. Bull Soc Pathol Exot 1964; 57: 424–431.

    CAS  Google Scholar 

  31. Udalova IA, Nedospasov SA, Webb GC, Chaplin DD, Turetskaya RL . Highly informative typing of the human TNF locus using six adjacent polymorphic markers. Genomics 1993; 16: 180–186.

    Article  CAS  PubMed  Google Scholar 

  32. Eskdale J, Turestkaya RL, Armstrong C et al. A polymorphic microsatellite marker in the human p55 TNF receptor, CD120a. Genes Immun 2000; 1: 228–230.

    Article  CAS  PubMed  Google Scholar 

  33. Scott P, Ouimet D, Valiquette L et al. Suggestive evidence for a susceptibility gene near the vitamin D receptor locus in idiopathic calcium stone formation. J Am Soc Nephrol 1999; 10: 1007–1013.

    CAS  PubMed  Google Scholar 

  34. Holland PM, Abramson RD, Watson R, Gelfand DH . Detection of specific polymerase chain reaction product by utilizing the 5′—3′ exonuclease activity of Thermus aquaticus DNA polymerase. Proc Natl Acad Sci USA 1991; 88: 7276–7280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lee LG, Connell CR, Bloch W . Allelic discrimination by nick-translation PCR with fluorogenic probes. Nucleic Acids Res 1993; 21: 3761–3766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Holmans P . Likelihood-ratio affected sib-pair tests applied to multiply affected sibships: issues of power and type I error rate. Genet Epidemiol 2001; 20: 44–56.

    Article  CAS  PubMed  Google Scholar 

  37. Alcais A, Abel L . Linkage analysis of quantitative trait loci: sib pairs or sibships? Hum Hered 2000; 50: 25 125–25 126.

    Article  Google Scholar 

  38. Abel L, Alcais A, Mallet A . Comparison of four sib-pair linkage methods for analyzing sibships with more than two affecteds: interest of the binomial maximum likelihood approach. Genet Epidemiol 1998; 15: 371–390.

    Article  CAS  PubMed  Google Scholar 

  39. Abel L, Muller-Myhsok B . Robustness and power of the maximum-likelihood-binomial and maximum-likeli-hood-score methods, in multipoint linkage analysis of affected-sibship data. Am J Hum Genet 1998; 63: 638–647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Alcais A, Abel L . Maximum-Likelihood-Binomial method for genetic model-free linkage analysis of quantitative traits in sibships. Genet Epidemiol 1999; 17: 102–117.

    Article  CAS  PubMed  Google Scholar 

  41. Alcais A, Philippi A, Abel L . Genetic model-free linkage analysis using the maximum-likelihood- binomial method for categorical traits. Genet Epidemiol 1999; 17 (Suppl 1): S467–S472.

    Article  PubMed  Google Scholar 

  42. Kruglyak L, Daly MJ, Reeve-Daly MP, Lander ES . Parametric and nonparametric linkage analysis: a unified multipoint approach. Am J Hum Genet 1996; 58: 1347–1363.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Action Incitative Blanche, Fondation BNP-Paribas, Fondation pour la Recherche Médicale and Fondation Schlumberger (AA and LA), and by grant MT 15662 from the Canadian Institute of Health Research (CIHR) to ES. MTM is supported by a graduate fellowship of the Brazilian Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES). ES is a CIHR Career Investigator.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E Schurr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mira, M., Alcais, A., di Pietrantonio, T. et al. Segregation of HLA/TNF region is linked to leprosy clinical spectrum in families displaying mixed leprosy subtypes. Genes Immun 4, 67–73 (2003). https://doi.org/10.1038/sj.gene.6363911

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gene.6363911

Keywords

This article is cited by

Search

Quick links