Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

WFS1 gene as a putative biomarker for development of post-traumatic syndrome in an animal model

Abstract

Post-traumatic stress disorder (PTSD) is an anxiety disorder that may develop after the experiencing or witnessing of a life-threatening event. PTSD is defined by the coexistence of three clusters of symptoms: re-experiencing, avoidance and hyperarousal, which persist for at least 1 month in survivors of the event (Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition). Using an established model of PTSD, we addressed the well-accepted clinical finding that only a minority (about 20%) of the individuals exposed to a traumatic event develop PTSD. Moreover, we followed individual rat behavior for up to a month, and then treated the PTSD-like animals with citalopram. Our data demonstrate high face (20% of rats exposed to a reminder of the stressor develop symptoms characteristic of PTSD) and predictive (response to citalopram) validities. Based on these validities we identified alterations in the Wolframin gene in the CA1 and amygdala regions, specifically in exposed PTSD-like rats, which were normalized after treatment with citalopram. We suggest the Wolframin gene as a putative biomarker for PTSD. Since Wolframin gene undergoes alternative splicing and has polymorphism in the population, it may serve a future marker for identification of the vulnerable population exposed to a traumatic event.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Davidson JR, Stein DJ, Shalev AY, Yehuda R . Posttraumatic stress disorder: acquisition, recognition, course, and treatment. J Neuropsychiatry Clin Neurosci 2004; 16: 135–147.

    Article  Google Scholar 

  2. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSM IV). American Psychiatric Press: Washington, DC, 1994.

  3. Bloom FE, Kupfer DJ . Psychopharmacology: The Fourth Generation of Progress. Raven Press: New York, 1995.

    Google Scholar 

  4. Clement Y, Calatayud F, Belzung C . Genetic basis of anxiety-like behaviour: a critical review. Brain Res Bull 2002; 57: 57–71.

    Article  Google Scholar 

  5. Nutt D, Davidson JRT . Post-Traumatic Stress Disorder Diagnosis, Management and Treatment. Taylor & Francis: London, 2000.

    Google Scholar 

  6. Servatius RJ, Ottenweller JE, Natelson BH . Delayed startle sensitization distinguishes rats exposed to one or three stress sessions: further evidence toward an animal model of PTSD. Biol Psychiatry 1995; 38: 539–546.

    Article  CAS  Google Scholar 

  7. Pynoos RS, Ritzmann RF, Steinberg AM, Goenjian A, Prisecaru I . A behavioral animal model of posttraumatic stress disorder featuring repeated exposure to situational reminders. Biol Psychiatry 1996; 39: 129–134.

    Article  CAS  Google Scholar 

  8. Garrick T, Morrow N, Shalev AY, Eth S . Stress-induced enhancement of auditory startle: an animal model of posttraumatic stress disorder. Psychiatry 2001; 64: 346–354.

    Article  CAS  Google Scholar 

  9. Koba T, Kodama Y, Shimizu K, Nomura S, Sugawara M, Kobayashi Y et al. Persistent behavioural changes in rats following inescapable shock stress: a potential model of posttraumatic stress disorder. World J Biol Psychiatry 2001; 2: 34–37.

    Article  CAS  Google Scholar 

  10. Richter-Levin G . Acute and long-term behavioral correlates of underwater trauma—potential relevance to stress and post-stress syndromes. Psychiatry Res 1998; 79: 73–83.

    Article  CAS  Google Scholar 

  11. Liberzon I, Krstov M, Young EA . Stress-restress: effects on ACTH and fast feedback. Psychoneuroendocrinology 1997; 22: 443–453.

    Article  CAS  Google Scholar 

  12. Torres IL, Gamaro GD, Vasconcellos AP, Silveira R, Dalmaz C . Effects of chronic restraint stress on feeding behavior and on monoamine levels in different brain structures in rats. Neurochem Res 2002; 27: 519–525.

    Article  CAS  Google Scholar 

  13. Adamec RE, Shallow T . Lasting effects on rodent anxiety of a single exposure to a cat. Physiol Behav 1993; 54: 101–109.

    Article  CAS  Google Scholar 

  14. Adamec RE, Burton P, Shallow T, Budgell J . NMDA receptors mediate lasting increases in anxiety-like behavior produced by the stress of predator exposure-implications for anxiety associated with posttraumatic stress disorder. Physiol Behav 1999; 65: 723–737.

    Article  CAS  Google Scholar 

  15. Cohen H, Zohar J, Matar M . The relevance of differential response to trauma in an animal model of posttraumatic stress disorder. Biol Psychiatry 2003; 53: 463–473.

    Article  Google Scholar 

  16. Cohen H, Kaplan Z, Kotler M . CCK-antagonists in a rat exposed to acute stress: implication for anxiety associated with post-traumatic stress disorder. Depress Anxiety 1999; 10: 8–17.

    Article  CAS  Google Scholar 

  17. Cohen H, Benjamin J, Kaplan Z, Kotler M . Administration of high-dose ketoconazole, an inhibitor of steroid synthesis, prevents posttraumatic anxiety in an animal model. Eur Neuropsychopharmacol 2000; 10: 429–435.

    Article  CAS  Google Scholar 

  18. Morrow BA, Redmond AJ, Roth RH, Elsworth JD . The predator odor, TMT, displays a unique, stress-like pattern of dopaminergic and endocrinological activation in the rat. Brain Res 2000; 864: 146–151.

    Article  CAS  Google Scholar 

  19. Dielenberg RA, Hunt GE, McGregor IS . ‘When a rat smells a cat’: the distribution of Fos immunoreactivity in rat brain following exposure to a predatory odor. Neuroscience 2001; 104: 1085–1097.

    Article  CAS  Google Scholar 

  20. Makino S, Shibasaki T, Yamauchi N, Nishioka T, Mimoto T, Wakabayashi I et al. Psychological stress increased corticotropin-releasing hormone mRNA and content in the central nucleus of the amygdala but not in the hypothalamic paraventricular nucleus in the rat. Brain Res 1999; 850: 136–143.

    Article  CAS  Google Scholar 

  21. Funada M, Hara C . Differential effects of psychological stress on activation of the 5-hydroxytryptamine- and dopamine-containing neurons in the brain of freely moving rats. Brain Res 2001; 901: 247–251.

    Article  CAS  Google Scholar 

  22. Ottenweller JE, Natelson BH, Pitman DL, Drastal SD . Adrenocortical and behavioral responses to repeated stressors: toward an animal model of chronic stress and stress-related mental illness. Biol Psychiatry 1989; 26: 829–841.

    Article  CAS  Google Scholar 

  23. Feldman RS, Meyer JS, Quenzer LF . Affective disorders. In: Feldman RS, Meyer JS, Quenzer LF (eds). Principles of Neuropharmacology. Sinauer: Sunderland, 1997, pp 819–861.

    Google Scholar 

  24. Mechiel KS, De Boer SF . A robust animal model of state anxiety: fear-potentiated behaviour in the elevated plus-maze. Eur J Pharmacol 2003; 463: 163–175.

    Article  Google Scholar 

  25. Ozer EJ, Best SR, Lipsey TL, Weiss DS . Predictors of posttraumatic stress disorder and symptoms in adults: a meta-analysis. Psychol Bull 2003; 129: 52–73.

    Article  Google Scholar 

  26. Segman RH, Shefi N, Goltser-Dubner T, Friedman N, Kaminski N, Shalev AY . Peripheral blood mononuclear cell gene expression profiles identify emergent post-traumatic stress disorder among trauma survivors. Mol Psychiatry 2005; 10: 500–513, 425.

    Article  CAS  Google Scholar 

  27. Hope BT, Crombag HS, Jedynak JP, Wise RA . Neuroadaptations of total levels of adenylate cyclase, protein kinase A, tyrosine hydroxylase, cdk5 and neurofilaments in the nucleus accumbens and ventral tegmental area do not correlate with expression of sensitized or tolerant locomotor responses to cocaine. J Neurochem 2005; 92: 536–545.

    Article  CAS  Google Scholar 

  28. Swift M, Swift RG . Wolframin mutations and hospitalization for psychiatric illness. Mol Psychiatry 2005; 10: 799–803.

    Article  CAS  Google Scholar 

  29. Koido K, Koks S, Nikopensius T, Maron E, Altmae S, Heinaste E et al. Polymorphisms in Wolframin (WFS1) gene are possibly related to increased risk for mood disorders. Int J Neuropsychopharmacol 2005; 8: 235–244.

    Article  CAS  Google Scholar 

  30. Koks S, Planken A, Luuk H, Vasar E . Cat odour exposure increases the expression of Wolframin gene in the amygdaloid area of rat. Neurosci Lett 2002; 322: 116–120.

    Article  CAS  Google Scholar 

  31. Zangen A, Overstreet DH, Yadid G . High serotonin and 5-hydroxyindoleacetic acid levels in limbic brain regions in a rat model of depression: normalization by chronic antidepressant treatment. J Neurochem 1997; 69: 2477–2483.

    Article  CAS  Google Scholar 

  32. Breslau N, Davis GC, Andreski P, Peterson E . Traumatic events and posttraumatic stress disorder in an urban population of young adults. Arch Gen Psychiatry 1991; 48: 216–222.

    Article  CAS  Google Scholar 

  33. Breslau N, Kessler RC, Chilcoat HD, Schultz LR, Davis GC, Andreski P . Trauma and posttraumatic stress disorder in the community: the 1996 Detroit Area Survey of Trauma. Arch Gen Psychiatry 1998; 55: 626–632.

    Article  CAS  Google Scholar 

  34. Jordan BK, Schlenger WE, Hough R, Kulka RA, Weiss D, Fairbank JA et al. Lifetime and current prevalence of specific psychiatric disorders among Vietnam veterans and controls. Arch Gen Psychiatry 1991; 48: 207–215.

    Article  CAS  Google Scholar 

  35. Dohrenwend BP, Turner JB, Turse NA, Adams BG, Koenen KC, Marshall R . The psychological risks of Vietnam for U.S. veterans: a revisit with new data and methods. Science 2006; 313: 979–982.

    Article  CAS  Google Scholar 

  36. Resnick HS, Kilpatrick DG, Dansky BS, Saunders BE, Best CL . Prevalence of civilian trauma and posttraumatic stress disorder in a representative national sample of women. J Consult Clin Psychol 1993; 61: 984–991.

    Article  CAS  Google Scholar 

  37. Khouzam HR, el Gabalawi F, Donnelly NJ . The clinical experience of citalopram in the treatment of post-traumatic stress disorder: a report of two Persian Gulf War veterans. Mil Med 2001; 166: 921–923.

    Article  CAS  Google Scholar 

  38. Seedat S, Lockhat R, Kaminer D, Zungu-Dirwayi N, Stein DJ . An open trial of citalopram in adolescents with post-traumatic stress disorder. Int Clin Psychopharmacol 2001; 16: 21–25.

    Article  CAS  Google Scholar 

  39. Seedat S, Stein DJ, Emsley RA . Open trial of citalopram in adults with post-traumatic stress disorder. Int J Neuropsychopharmacol 2000; 3: 135–140.

    Article  CAS  Google Scholar 

  40. Seedat S, Stein DJ, Ziervogel C, Middleton T, Kaminer D, Emsley RA et al. Comparison of response to a selective serotonin reuptake inhibitor in children, adolescents, and adults with posttraumatic stress disorder. J Child Adolesc Psychopharmacol 2002; 12: 37–46.

    Article  Google Scholar 

  41. Tucker P, Potter-Kimball R, Wyatt DB, Parker DE, Burgin C, Jones DE et al. Can physiologic assessment and side effects tease out differences in PTSD trials? A double-blind comparison of citalopram, sertraline, and placebo. Psychopharmacol Bull 2003; 37: 135–149.

    PubMed  Google Scholar 

  42. Southwick SM, Bremner JD, Rasmusson A, Morgan III CA, Arnsten A, Charney DS . Role of norepinephrine in the pathophysiology and treatment of posttraumatic stress disorder. Biol Psychiatry 1999; 46: 1192–1204.

    Article  CAS  Google Scholar 

  43. Yehuda R . Current status of cortisol findings in post-traumatic stress disorder. Psychiatr Clin North Am 2002; 25: 341–368, vii.

    Article  Google Scholar 

  44. McEwen BS, Magarinos AM . Stress effects on morphology and function of the hippocampus. Ann N Y Acad Sci 1997; 821: 271–284.

    Article  CAS  Google Scholar 

  45. Baker DG, Ekhator NN, Kasckow JW, Hill KK, Zoumakis E, Dashevsky BA et al. Plasma and cerebrospinal fluid interleukin-6 concentrations in posttraumatic stress disorder. Neuroimmunomodulation 2001; 9: 209–217.

    Article  CAS  Google Scholar 

  46. Spivak B, Shohat B, Mester R, Avraham S, Gil-Ad I, Bleich A et al. Elevated levels of serum interleukin-1 beta in combat-related posttraumatic stress disorder. Biol Psychiatry 1997; 42: 345–348.

    Article  CAS  Google Scholar 

  47. Maes M, Lin AH, Delmeire L, Van Gastel A, Kenis G, De Jongh R et al. Elevated serum interleukin-6 (IL-6) and IL-6 receptor concentrations in posttraumatic stress disorder following accidental man-made traumatic events. Biol Psychiatry 1999; 45: 833–839.

    Article  CAS  Google Scholar 

  48. Kawamura N, Kim Y, Asukai N . Suppression of cellular immunity in men with a past history of posttraumatic stress disorder. Am J Psychiatry 2001; 158: 484–486.

    Article  CAS  Google Scholar 

  49. Miller RJ, Sutherland AG, Hutchison JD, Alexander DA . C-reactive protein and interleukin 6 receptor in post-traumatic stress disorder: a pilot study. Cytokine 2001; 13: 253–255.

    Article  CAS  Google Scholar 

  50. Swift RG, Polymeropoulos MH, Torres R, Swift M . Predisposition of Wolfram syndrome heterozygotes to psychiatric illness. Mol Psychiatry 1998; 3: 86–91.

    Article  CAS  Google Scholar 

  51. Crawford J, Zielinski MA, Fisher LJ, Sutherland GR, Goldney RD . Is there a relationship between Wolfram syndrome carrier status and suicide? Am J Med Genet 2002; 114: 343–346.

    Article  Google Scholar 

  52. Martorell L, Zaera MG, Valero J, Serrano D, Figuera L, Joven J et al. The WFS1 (Wolfram syndrome 1) is not a major susceptibility gene for the development of psychiatric disorders. Psychiatr Genet 2003; 13: 29–32.

    Article  Google Scholar 

  53. Sequeira A, Kim C, Seguin M, Lesage A, Chawky N, Desautels A et al. Wolfram syndrome and suicide: evidence for a role of WFS1 in suicidal and impulsive behavior. Am J Med Genet B Neuropsychiatr Genet 2003; 119: 108–113.

    Article  Google Scholar 

  54. Khanim F, Kirk J, Latif F, Barrett TG . WFS1/Wolframin mutations, wolfram syndrome, and associated diseases. Hum Mutat 2001; 17: 357–367.

    Article  CAS  Google Scholar 

  55. Hofmann S, Philbrook C, Gerbitz KD, Bauer MF . Wolfram syndrome: structural and functional analyses of mutant and wild-type Wolframin, the WFS1 gene product. Hum Mol Genet 2003; 12: 2003–2012.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Lundbeck A/S, Copenhagen-DK (Adam Keeney) for the generous support establishing this study and providing citalopram HBr. The results of this paper are patent pending (Patent Number 10/549.596).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Yadid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kesner, Y., Zohar, J., Merenlender, A. et al. WFS1 gene as a putative biomarker for development of post-traumatic syndrome in an animal model. Mol Psychiatry 14, 86–94 (2009). https://doi.org/10.1038/sj.mp.4002109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4002109

Keywords

This article is cited by

Search

Quick links