Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Research Article
  • Published:

SC35 promotes sustainable stress-induced alternative splicing of neuronal acetylcholinesterase mRNA

Abstract

Long-lasting alternative splicing of neuronal acetylcholinesterase (AChE) pre-mRNA occurs during neuronal development and following stress, altering synaptic properties. To explore the corresponding molecular events, we sought to identify mRNAs encoding for abundant splicing factors in the prefrontal cortex (PFC) following stress. Here we show elevated levels of the splicing factor SC35 in stressed as compared with naïve mice. In cotransfections of COS-1 and HEK293 cells with an AChE minigene allowing 3′ splice variations, SC35 facilitated a shift from the primary AChE-S to the stress-induced AChE-R variant, while ASF/SF2 caused the opposite effect. Transfection with chimeric constructs comprising of SC35 and ASF/SF2 RRM/RS domains identified the SC35 RRM as responsible for AChE mRNA's alternative splicing. In poststress PFC neurons, increased SC35 mRNA and protein levels coincided with selective increase in AChE-R mRNA. In the developing mouse embryo, cortical progenitor cells in the ventricular zone displayed transient SC35 elevation concomitant with dominance of AChE-R over AChE-S mRNA. Finally, transgenic mice overexpressing human AChE-R, but not those overexpressing AChE-S, showed significant elevation in neuronal SC35 levels, suggesting a reciprocal reinforcement process. Together, these findings point to an interactive relationship of SC35 with cholinergic signals in the long-lasting consequences of stress on nervous system plasticity and development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Grabowski PJ, Black DL . Alternative RNA splicing in the nervous system. Prog Neurobiol 2001; 65: 289–308.

    Article  CAS  Google Scholar 

  2. Stamm S, Ben-Ari S, Rafalska I, Tang Y, Zhang Z, Toiber D et al. Function of alternative splicing. Gene 2005; 344: 1–20.

    Article  CAS  Google Scholar 

  3. Dredge BK, Polydorides AD, Darnell RB . The splice of life: alternative splicing and neurological disease. Nat Rev Neurosci 2001; 2: 43–50.

    Article  CAS  Google Scholar 

  4. Meshorer E, Soreq H . Splicing modulations in senescence. Aging Cell 2002; 1: 10–16.

    Article  CAS  Google Scholar 

  5. Mitchelmore C, Kjaerulff KM, Pedersen HC, Nielsen JV, Rasmussen TE, Fisker MF et al. Characterization of two novel nuclear BTB/POZ domain zinc finger isoforms. Association with differentiation of hippocampal neurons, cerebellar granule cells, and macroglia. J Biol Chem 2002; 277: 7598–7609.

    Article  CAS  Google Scholar 

  6. Lemaire V, Koehl M, Le Moal M, Abrous DN . Prenatal stress produces learning deficits associated with an inhibition of neurogenesis in the hippocampus. Proc Natl Acad Sci USA 2000; 97: 11032–11037.

    Article  CAS  Google Scholar 

  7. Nissim-Rafinia M, Kerem B . Splicing regulation as a potential genetic modifier. Trends Genet 2002; 18: 123–127.

    Article  CAS  Google Scholar 

  8. Stoilov P, Meshorer E, Gencheva M, Glick D, Soreq H, Stamm S . Defects in pre-mRNA processing as causes of and predisposition to diseases. DNA Cell Biol 2002; 21: 803–818.

    Article  CAS  Google Scholar 

  9. Faustino NA, Cooper TA . Pre-mRNA splicing and human disease. Genes Dev 2003; 17: 419–437.

    Article  CAS  Google Scholar 

  10. Lin CL, Bristol LA, Jin L, Dykes-Hoberg M, Crawford T, Clawson L et al. Aberrant RNA processing in a neurodegenerative disease: the cause for absent EAAT2, a glutamate transporter, in amyotrophic lateral sclerosis. Neuron 1998; 20: 589–602.

    Article  CAS  Google Scholar 

  11. Catania MV, Aronica E, Yankaya B, Troost D . Increased expression of neuronal nitric oxide synthase spliced variants in reactive astrocytes of amyotrophic lateral sclerosis human spinal cord. J Neurosci 2001; 21: RC148.

    Article  CAS  Google Scholar 

  12. Soreq H, Seidman S . Acetylcholinesterase—new roles for an old actor. Nat Rev Neurosci 2001; 2: 294–302.

    Article  CAS  Google Scholar 

  13. Meshorer E, Erb C, Gazit R, Pavlovsky L, Kaufer D, Friedman A et al. Alternative splicing and neuritic mRNA translocation under long-term neuronal hypersensitivity. Science 2002; 295: 508–512.

    Article  CAS  Google Scholar 

  14. Meshorer E, Toiber D, Zurel D, Sahly I, Dori A, Cagnano E et al. Combinatorial complexity of 5′ alternative acetylcholinesterase transcripts and protein products. J Biol Chem 2004; 279: 29740–29751.

    Article  CAS  Google Scholar 

  15. Tacke R, Manley JL . Determinants of SR protein specificity. Curr Opin Cell Biol 1999; 11: 358–362.

    Article  CAS  Google Scholar 

  16. Bandziulis RJ, Swanson MS, Dreyfuss G . RNA-binding proteins as developmental regulators. Genes Dev 1989; 3: 431–437.

    Article  CAS  Google Scholar 

  17. Birney E, Kumar S, Krainer AR . Analysis of the RNA-recognition motif and RS and RGG domains: conservation in metazoan pre-mRNA splicing factors. Nucleic Acids Res 1993; 21: 5803–5816.

    Article  CAS  Google Scholar 

  18. Cartegni L, Chew SL, Krainer AR . Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat Rev Genet 2002; 3: 285–298.

    Article  CAS  Google Scholar 

  19. Hanamura A, Caceres JF, Mayeda A, Franza Jr BR, Krainer AR . Regulated tissue-specific expression of antagonistic pre-mRNA splicing factors. RNA 1998; 4: 430–444.

    PubMed  PubMed Central  CAS  Google Scholar 

  20. Mintz PJ, Spector DL . Compartmentalization of RNA processing factors within nuclear speckles. J Struct Biol 2000; 129: 241–251.

    Article  CAS  Google Scholar 

  21. Daoud R, Mies G, Smialowska A, Olah L, Hossmann KA, Stamm S . Ischemia induces a translocation of the splicing factor tra2-beta 1 and changes alternative splicing patterns in the brain. J Neurosci 2002; 22: 5889–5899.

    Article  CAS  Google Scholar 

  22. Kramer A . The structure and function of proteins involved in mammalian pre-mRNA splicing. Annu Rev Biochem 1996; 65: 367–409.

    Article  CAS  Google Scholar 

  23. Buijs RM, Van Eden CG . The integration of stress by the hypothalamus, amygdala and prefrontal cortex: balance between the autonomic nervous system and the neuroendocrine system. Prog Brain Res 2000; 126: 117–132.

    Article  CAS  Google Scholar 

  24. Kawahara H, Yoshida M, Yokoo H, Nishi M, Tanaka M . Psychological stress increases serotonin release in the rat amygdala and prefrontal cortex assessed by in vivo microdialysis. Neurosci Lett 1993; 162: 81–84.

    Article  CAS  Google Scholar 

  25. Hamamura T, Fibiger HC . Enhanced stress-induced dopamine release in the prefrontal cortex of amphetamine-sensitized rats. Eur J Pharmacol 1993; 237: 65–71.

    Article  CAS  Google Scholar 

  26. Mark GP, Rada PV, Shors TJ . Inescapable stress enhances extracellular acetylcholine in the rat hippocampus and prefrontal cortex but not the nucleus accumbens or amygdala. Neuroscience 1996; 74: 767–774.

    Article  CAS  Google Scholar 

  27. Bagley J, Moghaddam B . Temporal dynamics of glutamate efflux in the prefrontal cortex and in the hippocampus following repeated stress: effects of pretreatment with saline or diazepam. Neuroscience 1997; 77: 65–73.

    Article  CAS  Google Scholar 

  28. Mizoguchi K, Yuzurihara M, Ishige A, Sasaki H, Chui DH, Tabira T . Chronic stress induces impairment of spatial working memory because of prefrontal dopaminergic dysfunction. J Neurosci 2000; 20: 1568–1574.

    Article  CAS  Google Scholar 

  29. Sureau A, Soret J, Guyon C, Gaillard C, Dumon S, Keller M et al. Characterization of multiple alternative RNAs resulting from antisense transcription of the PR264/SC35 splicing factor gene. Nucleic Acids Res 1997; 25: 4513–4522.

    Article  CAS  Google Scholar 

  30. Schwede T, Kopp J, Guex N, Peitsch MC . SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 2003; 31: 3381–3385.

    Article  CAS  Google Scholar 

  31. Karpel R, Sternfeld M, Ginzberg D, Guhl E, Graessmann A, Soreq H . Overexpression of alternative human acetylcholinesterase forms modulates process extensions in cultured glioma cells. J Neurochem 1996; 66: 114–123.

    Article  CAS  Google Scholar 

  32. Velan B, Kronman C, Grosfeld H, Leitner M, Gozes Y, Flashner Y et al. Recombinant human acetylcholinesterase is secreted from transiently transfected 293 cells as a soluble globular enzyme. Cell Mol Neurobiol 1991; 11: 143–156.

    Article  CAS  Google Scholar 

  33. Kadener S, Fededa JP, Rosbash M, Kornblihtt AR . Regulation of alternative splicing by a transcriptional enhancer through RNA pol II elongation. Proc Natl Acad Sci USA 2002; 99: 8185–8190.

    Article  CAS  Google Scholar 

  34. Gallego ME, Gattoni R, Stevenin J, Marie J, Expert-Bezancon A . The SR splicing factors ASF/SF2 and SC35 have antagonistic effects on intronic enhancer-dependent splicing of the beta-tropomyosin alternative exon 6A. EMBO J 1997; 16: 1772–1784.

    Article  CAS  Google Scholar 

  35. Expert-Bezancon A, Sureau A, Durosay P, Salesse R, Groeneveld H, Lecaer JP et al. hnRNP A1 and the SR proteins ASF/SF2 and SC35 have antagonistic functions in splicing of beta-tropomyosin exon 6B. J Biol Chem 2004; 279: 38249–38259.

    Article  CAS  Google Scholar 

  36. Lev-Lehman E, Deutsch V, Eldor A, Soreq H . Immature human megakaryocytes produce nuclear-associated acetylcholinesterase. Blood 1997; 89: 3644–3653.

    PubMed  CAS  Google Scholar 

  37. Dori A, Cohen J, Silverman WF, Pollack Y, Soreq H . Functional manipulations of acetylcholinesterase splice variants highlight alternative splicing contributions to murine neocortical development. Cereb Cortex 2005; 15: 419–430.

    Article  Google Scholar 

  38. Parnavelas JG . The origin and migration of cortical neurones: new vistas. Trends Neurosci 2000; 23: 126–131.

    Article  CAS  Google Scholar 

  39. Sureau A, Gattoni R, Dooghe Y, Stevenin J, Soret J . SC35 autoregulates its expression by promoting splicing events that destabilize its mRNAs. EMBO J 2001; 20: 1785–1796.

    Article  CAS  Google Scholar 

  40. Meshorer E, Biton IE, Ben-Shaul Y, Ben-Ari S, Assaf Y, Soreq H et al. Chronic cholinergic imbalances promote brain diffusion and transport abnormalities. FASEB J 2005; 19: 910–922.

    Article  CAS  Google Scholar 

  41. Deschenes-Furry J, Belanger G, Perrone-Bizzozero N, Jasmin BJ . Post-transcriptional regulation of acetylcholinesterase mRNAs in nerve growth factor-treated PC12 cells by the RNA-binding protein HuD. J Biol Chem 2003; 278: 5710–5717.

    Article  CAS  Google Scholar 

  42. Wang HY, Xu X, Ding JH, Bermingham Jr JR, Fu XD . SC35 plays a role in T cell development and alternative splicing of CD45. Mol Cell 2001; 7: 331–342.

    Article  CAS  Google Scholar 

  43. Sun Q, Mayeda A, Hampson RK, Krainer AR, Rottman FM . General splicing factor SF2/ASF promotes alternative splicing by binding to an exonic splicing enhancer. Genes Dev 1993; 7: 2598–2608.

    Article  CAS  Google Scholar 

  44. Caceres JF, Stamm S, Helfman DM, Krainer AR . Regulation of alternative splicing in vivo by overexpression of antagonistic splicing factors. Science 1994; 265: 1706–1709.

    Article  CAS  Google Scholar 

  45. Petersen-Mahrt SK, Estmer C, Ohrmalm C, Matthews DA, Russell WC, Akusjarvi G . The splicing factor-associated protein, p32, regulates RNA splicing by inhibiting ASF/SF2 RNA binding and phosphorylation. EMBO J 1999; 18: 1014–1024.

    Article  CAS  Google Scholar 

  46. Kielkopf CL, Rodionova NA, Green MR, Burley SK . A novel peptide recognition mode revealed by the X-ray structure of a core U2AF35/U2AF65 heterodimer. Cell 2001; 106: 595–605.

    Article  CAS  Google Scholar 

  47. West AE, Griffith EC, Greenberg ME . Regulation of transcription factors by neuronal activity. Nat Rev Neurosci 2002; 3: 921–931.

    Article  CAS  Google Scholar 

  48. Pepeu G, Blandina P . The acetylcholine, GABA, glutamate triangle in the rat forebrain. J Physiol Paris 1998; 92: 351–355.

    Article  CAS  Google Scholar 

  49. van der Houven van Oordt W, Diaz-Meco MT, Lozano J, Krainer AR, Moscat J, Caceres JF . The MKK(3/6)-p38-signaling cascade alters the subcellular distribution of hnRNP A1 and modulates alternative splicing regulation. J Cell Biol 2000; 149: 307–316.

    Article  CAS  Google Scholar 

  50. Rooke N, Markovtsov V, Cagavi E, Black DL . Roles for SR proteins and hnRNP A1 in the regulation of c-src exon N1. Mol Cell Biol 2003; 23: 1874–1884.

    Article  CAS  Google Scholar 

  51. Denegri M, Chiodi I, Corioni M, Cobianchi F, Riva S, Biamonti G . Stress-induced nuclear bodies are sites of accumulation of pre-mRNA processing factors. Mol Biol Cell 2001; 12: 3502–3514.

    Article  CAS  Google Scholar 

  52. Weg-Remers S, Ponta H, Herrlich P, Konig H . Regulation of alternative pre-mRNA splicing by the ERK MAP-kinase pathway. EMBO J 2001; 20: 4194–4203.

    Article  CAS  Google Scholar 

  53. Caballero OL, de Souza SJ, Brentani RR, Simpson AJ . Alternative spliced transcripts as cancer markers. Dis Markers 2001; 17: 67–75.

    Article  CAS  Google Scholar 

  54. Perry C, Sklan EH, Birikh K, Shapira M, Trejo L, Eldor A et al. Complex regulation of acetylcholinesterase gene expression in human brain tumors. Oncogene 2002; 21: 8428–8441.

    Article  CAS  Google Scholar 

  55. Maeda T, Furukawa S . Transformation-associated changes in gene expression of alternative splicing regulatory factors in mouse fibroblast cells. Oncol Rep 2001; 8: 563–566.

    PubMed  CAS  Google Scholar 

  56. Maldarelli F, Xiang C, Chamoun G, Zeichner SL . The expression of the essential nuclear splicing factor SC35 is altered by human immunodeficiency virus infection. Virus Res 1998; 53: 39–51.

    Article  CAS  Google Scholar 

  57. Nie GY, Li Y, Batten L, Griffiths B, Wang J, Findlay JK et al. Uterine expression of alternatively spliced mRNAs of mouse splicing factor SC35 during early pregnancy. Mol Hum Reprod 2000; 6: 1131–1139.

    Article  CAS  Google Scholar 

  58. Pollard AJ, Sparey C, Robson SC, Krainer AR, Europe-Finner GN . Spatio-temporal expression of the trans-acting splicing factors SF2/ASF and heterogeneous ribonuclear proteins A1/A1B in the myometrium of the pregnant human uterus: a molecular mechanism for regulating regional protein isoform expression in vivo. J Clin Endocrinol Metab 2000; 85: 1928–1936.

    PubMed  CAS  Google Scholar 

  59. Bustin SA . Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol 2000; 25: 169–193.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Javier Caceres (Edinburgh) for kindly providing SC35 plasmids and Dr Bat-Sheva Kerem (Jerusalem) for SRp20 and ASF/SF2 plasmids. This study was supported by the Israel Science Fund (618/02-1), the European Union (QLK3-CT-2002-02062, LSHM-CT-2003-503330, DIP-G-3.2) and EURASNET, the Israel–US Binational Industrial Research and Development (BIRD-F) to Ester Neurosciences Ltd (www.esterneuro.com) and Pharmacopeia, Inc. EM has been an incumbent of a Lionel Perez predoctoral fellowship from the Israel Interdisciplinary Center for Neural Computation, the Hebrew University Rector's doctoral fellowship and a Golda Meir fellowship. BB has been an incumbent of a Haselkorn Fellowship. AD has been an incumbent of a postdoctoral fellowship from the Israel Psychobiology Fund.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E Meshorer or H Soreq.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meshorer, E., Bryk, B., Toiber, D. et al. SC35 promotes sustainable stress-induced alternative splicing of neuronal acetylcholinesterase mRNA. Mol Psychiatry 10, 985–997 (2005). https://doi.org/10.1038/sj.mp.4001735

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001735

Keywords

This article is cited by

Search

Quick links