Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Disruption of orientation tuning visual cortex by artificially correlated neuronal activity

Abstract

In the primary visual cortex, the development of orientation selectivity is influenced by patterns of neural activity. The introduction of artificially correlated activity into the visual pathway (through synchronous activation of retinal ganglion cell axons in the optic nerve) substantially weakens the orientation selectivity of neurons in superficial and deep cortical layers. This is consistent with activity having an instructive role in shaping cortical neuron receptive field tuning properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hubel, D. H. & Wiesel, T. N. Receptive fields, binocular interaction, and functional architecture in the cat's visual cortex. J. Physiol. (Lond.) 160, 106–154 (1962).

    Article  CAS  Google Scholar 

  2. Stryker, M. P. & Harris, W. A. Binocular impulse blockade prevents formation of ocular dominance columns in the cat's visual cortex. J. Neurosci. 6, 2117–2133 (1986).

    Article  CAS  Google Scholar 

  3. Chapman, B., Stryker, M. P. & Bonhoeffer, T. Development of orientation preference maps in ferret primary visual cortex. J. Neurosci. 15, 6443–6453 (1996).

    Article  Google Scholar 

  4. Wiesel, T. N. & Hubel, D. H. Ordered arrangement of orientation columns in monkeys lacking visual experience. J. Comp. Neurol. 158, 308–318 (1974).

    Article  Google Scholar 

  5. Chapman, B. & Stryker, M. P. Development of orientation selectivity in ferret visual cortex and effects of deprivation. J. Neurosci. 13, 5251–5262 (1993).

    Article  CAS  Google Scholar 

  6. Stryker, M. P. & Strickland, S. L. Physiological segregation of ocular dominance columns depends on the pattern of afferent electrical activity. Invest. Opthalmol. Vis. Sci. 25 (suppl.), 278 (1984).

    Google Scholar 

  7. Hubel, D. H. & Wiesel, T. N. Binocular interaction in striate cortex of kittens reared with artificial squint. J. Neurophysiol. 28, 1041–1059 (1965).

    Article  CAS  Google Scholar 

  8. Wörgötter, F. & Eysel, U. T. Correlations between directional and orientational tuning of cells in cat striate cortex. Exp. Brain Res. 83, 665–669 (1991).

    PubMed  Google Scholar 

  9. Fregnac, Y. et al. Effect of neonatal unilateral enucleation on the development of orientation selectivity in the primary visual cortex of normally and dark-reared kittens. Exp. Br. Res. 42, 453–466 (1981).

    CAS  Google Scholar 

  10. Reid, R. C. & Alonso, J. M. Specificity of monosynaptic connections from thalamus to visual cortex. Nature 378, 281–284 (1995).

    Article  ADS  CAS  Google Scholar 

  11. Dubin, M. W., Stark, L. A. & Archer, S. M. A role for action-potential activity in the development of neuronal connections in the kitten retinogeniculate pathway. J. Neurosci. 6, 1021–1036 (1986).

    Article  CAS  Google Scholar 

  12. Hahm, J., Langdon, R. B. & Sur, M. Disruption of retinogeniculate afferent segregation by antagonists to NMDA receptors. Nature 351, 568–570 (1991).

    Article  ADS  CAS  Google Scholar 

  13. Weliky, M., Bosking, W. H. & Fitzpatrick, D. A systematic map of direction preference in primary visual cortex. Nature 379, 725–728 (1996).

    Article  ADS  CAS  Google Scholar 

  14. Meister, M., Wong, R. O. L., Baylor, D. A. & Shatz, C. J. Synchronous bursts of action potentials in ganglion cells of the developing mammalian retina. Science 17, 939–943 (1991).

    Article  ADS  Google Scholar 

  15. Wong, R. O. L., Meister, M. & Shatz, C. J. Transient period of correlated bursting activity during development of the mammalian retina. Neuron 11, 923–938 (1993).

    Article  CAS  Google Scholar 

  16. Mastronade, D. N. Correlated firing of cat retinal ganglion cells. Spontaneous active inputs to X- and Y-cells. J. Neurophysiol. 49, 303–324 (1983).

    Article  Google Scholar 

  17. Wong, R. O. L. & Oakley, D. M. Changing patterns of spontaneous bursting activity of On and Off retinal ganglion cells during development. Neuron 16, 1087–1095 (1996).

    Article  CAS  Google Scholar 

  18. McCormick, D. A., Trent, F. & Ramoa, A. S. Postnatal development of synchronized network oscillations in the ferret dorsal lateral geniculate and perigeniculate nuclei. J. Neurosci. 15, 5739–5752 (1995).

    Article  CAS  Google Scholar 

  19. Field, D. J. Relations between the statistics of natural images and the response properties of cortical cells. J. Opt. Soc. Am. A 4, 2379–2394 (1987).

    Article  ADS  CAS  Google Scholar 

  20. Miller, K. D. A model for the development of simple cell receptive fields and the ordered arrangement of orientation columns through activity dependent competition between ON- and OFF-center inputs. J. Neurosci. 14, 409–441 (1994).

    Article  CAS  Google Scholar 

  21. Miyashita, M. & Tanaka, S. A mathematical model for the self-organization of orientation columns in visual cortex. Neuroreport 3, 69–72 (1992).

    Article  CAS  Google Scholar 

  22. Allendoerfer, K. L. et al. Regulation of neurotrophin receptors during the maturation of the mammalian visual system. J. Neurosci. 14, 1795–1811 (1994).

    Article  CAS  Google Scholar 

  23. Kim, D. S. & Bonhoeffer, T. Reverse occlusion leads to a precise restoration of orientation preference maps in visual cortex. Nature 370, 370–372 (1994).

    Article  ADS  CAS  Google Scholar 

  24. Gödecke, I. & Bonhoeffer, T. Development of identical orientation maps for two eyes without common visual experience. Nature 379, 251–254 (1996).

    Article  ADS  Google Scholar 

  25. Linsker, R. From basic network principles to neural architecture: emergence of orientation columns. Proc. Natl Acad. Sci. USA 83, 8779–8783 (1986).

    Article  ADS  CAS  Google Scholar 

  26. Linsker, R. From basic network principles to neural architecture: emergence of orientation-selective cells. Proc. Natl Acad. Sci. USA 83, 8390–8394 (1986).

    Article  ADS  CAS  Google Scholar 

  27. Stent, G. S. A physiological mechanism for Hebb's postulate of learning. Proc. Natl Acad. Sci. USA 70, 997–1001 (1973).

    Article  ADS  CAS  Google Scholar 

  28. Changeux, J. P. & Danchin, A. Selective stabiization of developing synapses as a mechanism for the specification of neuronal networks. Nature 264, 705–711 (1976).

    Article  ADS  CAS  Google Scholar 

  29. Naples, G. G., Mortimer, J. T., Scheiner, A. & Sweeney, J. D. A spiral cuff electrode for peripheral nerve stimulation. IEEE Trans. Biomed. Eng. 35, 905–916 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weliky, M., Katz, L. Disruption of orientation tuning visual cortex by artificially correlated neuronal activity. Nature 386, 680–685 (1997). https://doi.org/10.1038/386680a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/386680a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing