Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Inherently unstable climate behaviour due to weak thermohaline ocean circulation

Abstract

The oceanic thermohaline circulation (THC) carries light, warm surface water polewards and dense, cold deep water equator-wards, thereby transporting a large amount of heat towards the poles and significantly affecting high latitude climate. The THC has been remarkably stable, and its variability quite low, over the Holocene period (the past 10,000 years). The much greater climate instability and high-frequency variability recorded in ice1 and deep-sea31 cores throughout the preceding 150,000 years has been linked to greater THC variability2,3. Here we argue, using a global coupled ocean–atmosphere–ice general circulation model with realistic geography, that there is a wide range of weak mean states of the THC that cannot be stably sustained by the climate system. When the model THC is forced into a state in the unstable range, the THC may rapidly strengthen, collapse or display strong oscillations. The existence of this unstable regime may account for the greater variability of the THC and climate before the Holocene period.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. GRIP Members Climate instability during the last interglacial period recorded in the GRIP ice core. Nature 364, 203–207 (1993).

  2. Broecker, W. S., Peteet, D. M. & Rind, D. Does the ocean-atmosphere system have more than one stable mode of operation? Nature 315, 21–25 (1985).

    Article  ADS  CAS  Google Scholar 

  3. Boyle, E. A. & Keigwin, L. North Atlantic thermohaline circulation during the past 20,000 years linked to high-latitude surface temperature. Nature 330, 35–40 (1987).

    Article  ADS  CAS  Google Scholar 

  4. Stommel, H. M. Thermohaline convection with two stable regimes of flow. Tellus XIII, 224–230 (1961).

    ADS  Google Scholar 

  5. McWilliams, J. C. Modelling the oceanic general circulation. Annu. Rev. Fluid. Mech. 28, 215–248 (1996).

    Article  ADS  Google Scholar 

  6. Walin, G. The thermohaline circulation and the control of ice ages. Palaeogeogr. Palaeoclimatol. Palaeoecol. 50, 323–332 (1985).

    Article  Google Scholar 

  7. Marotzke, J., Welander, P. & Willebrand, J. Instability and multiple steady states in a meridional-plane model of the thermohaline circulation. Tellus A 40, 162–172 (1988).

    Article  ADS  Google Scholar 

  8. Mikolajewicz, U. & Maier-Reimer, E. Mixed boundary conditions in ocean general circulation models and their influence on the stability of the model's conveyor belt. J. Geophys. Res. 99, 22633–22644 (1994).

    Article  ADS  Google Scholar 

  9. Brass, G. W., Southam, J. R. & Peterson, W. H. Warm saline bottom water in the ancient ocean. Nature 296, 620–623 (1982).

    Article  ADS  CAS  Google Scholar 

  10. Toggweiler, J. R. et al. Reply. J. Phys. Oceanogr. 26, 1106–1110 (1996).

    Article  ADS  Google Scholar 

  11. Bryan, F. High-latitude salinity effects and interhemispheric thermohaline circulations. Nature 323, 301–304 (1986).

    Article  ADS  CAS  Google Scholar 

  12. Weaver, A. J., Sarachick, E. S. & Marotzke, J. Freshwater flux forcing of decadal and interdecadal oceanic variability. Nature 353, 836–838 (1991).

    Article  ADS  Google Scholar 

  13. Chen, F. & Ghil, M. Interdecadal variability of the thermohaline circulation and high-latitude surface fluxes. J. Phys. Oceanogr. 25, 2547–2568 (1995).

    Article  ADS  Google Scholar 

  14. Rahmstorf, S. Bifurcations of the Atlantic thermohaline circulation in response to changes in the hydrological cycle. Nature 378, 145–149 (1995).

    Article  ADS  CAS  Google Scholar 

  15. Tziperman, E., Toggweiler, R., Feliks, Y. & Bryan, K. Instability of the thermohaline circulation with respect to mixed boundary conditions: Is it really a problem for realistic models? J. Phys. Oceanogr. 24, 217–232 (1994).

    Article  ADS  Google Scholar 

  16. Zhang, S., Greatbatch, R. J. & Lin, C. A. A reexamination of the polar halocline catastrophe and implications for coupled ocean-atmosphere modeling. J. Phys. Oceanogr. 23, 287–299 (1993).

    Article  ADS  Google Scholar 

  17. Rahmstorf, S. & Willebrand, J. The role of temperature feedback in stabilizing the thermohaline circulation. J. Phys. Oceanogr. 25, 787–805 (1995).

    Article  ADS  Google Scholar 

  18. Manabe, S., Spelman, M. J. & Bryan, K. Transient response of a coupled ocean-atmosphere model to gradual changes of atmospheric CO2. Part I: Annual mean response. J. Clim. 4, 785–818 (1991).

    Article  ADS  Google Scholar 

  19. Manabe, S. & Stouffer, R. J. Century-scale effects of increased atmospheric CO2 on the ocean-atmosphere system. Nature 364, 215–218 (1993).

    Article  ADS  CAS  Google Scholar 

  20. Delworth, T., Manabe, S. & Stouffer, R. J. Interdecadal variations of the thermohaline circulation in a coupled ocean-atmosphere model. J. Clim. 6, 1993–2011 (1993).

    Article  ADS  Google Scholar 

  21. Manabe, S. & Stouffer, R. J. Two stable equilibria of a coupled ocean-atmosphere model. J. Clim. 1, 841–866 (1988).

    Article  ADS  Google Scholar 

  22. Rahmstorf, S. Climate drift in an ocean model coupled to a simple, perfectly matched atmosphere. Clim. Dynam. 11, 447–458 (1996).

    Article  ADS  Google Scholar 

  23. Manabe, S. & Stouffer, R. J. Simulation of abrupt climate change induced by freshwater input to the North Atlantic ocean. Nature 378, 165–167 (1995).

    Article  ADS  CAS  Google Scholar 

  24. Lenderink, G. & Haarsma, R. J. Variability and multiple equilibria of the thermohaline circulation associated with deep water formation. J. Phys. Oceanogr. 24, 1480–1493 (1994).

    Article  ADS  Google Scholar 

  25. Griffies, S. & Tziperman, E. A linear thermohaline oscillator driven by stochastic atmospheric forcing. J. Clim. 8, 2440–2453 (1995).

    Article  ADS  Google Scholar 

  26. Weaver, A. J. & Hughes, T. M. C. Rapid interglacial climate fluctuations driven by North Atlantic ocean circulation. Nature 367, 447–450 (1994).

    Article  ADS  Google Scholar 

  27. Neelin, J. D. & Dijkstra, H. A. Ocean-atmosphere interaction and the tropical climatology. Part I: the dangers of flux adjustment. J. Clim. 8, 1325–1342 (1995).

    Article  ADS  Google Scholar 

  28. Marotzke, J. & Stone, P. H. Atmospheric transports, the thermohaline circulation, and flux adjustments in a simple coupled model. j. Phys. Oceanogr. 25, 1350–1364 (1995).

    Article  ADS  Google Scholar 

  29. Schiller, A., Mikolajewicz, U. & Voss, R. The stability of the thermohaline circulation in a coupled ocean-atmosphere general circulation model. Clim. Dynam. (in the press).

  30. Yu, E.-F., Francois, R. & Bacon, M. P. Similar rates of modern and last-glacial ocean thermohaline circulation inferred from radio-chemical data. Nature 379, 689–694 (1996).

    Article  ADS  CAS  Google Scholar 

  31. McManus, J. F. et al. High resolution climate records from the North Atlantic during the last interglacial. Nature 371, 326–329 (1995).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tziperman, E. Inherently unstable climate behaviour due to weak thermohaline ocean circulation. Nature 386, 592–595 (1997). https://doi.org/10.1038/386592a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/386592a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing