Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Control of spatial orientation and lifetime of scroll rings in excitable media

Abstract

Excitable media, which range from autocatalytic chemical systems1–3 to biological cells and tissues4–7, can maintain organized structures in the form of rotating spiral waves of excitation8–11. The dynamics of spiral waves in two-dimensional systems have been shown to be susceptible to control by external fields (such as electric, thermal and optical)12–14. In three dimensions, the analogues of spiral waves are scroll waves9,15,16. Here we show that an external field—a temperature gradient—can be used to control a particular class of scroll waves called scroll rings. The gradient allows scroll rings to be precisely oriented in space, and their spontaneous shrinkage to be accelerated, decelerated or even reversed (so that the ring expands). The temperature gradient also influences the lifetimes of the scroll rings. We suggest that these dynamics are likely to be generic to other types of field gradients and other excitable media.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Zhabotinsky, A. M. & Zaikin, A. N. Oscillatory Processes in Biological and Chemcial Systems Vol. 2 (Nauka, Pushchino, Russia, 1971).

    Google Scholar 

  2. Winfree, A. T. Spiral waves of chemical activity. Science 175, 634–636 (1972).

    Article  ADS  CAS  Google Scholar 

  3. Müller, S. C., Plesser, T. & Hess, B. Science 230, 661–663 (1985).

    Article  ADS  Google Scholar 

  4. Davidenko, J. M., Pertsov, A. M., Salomonsz, R., Baxter, W. & Jalife, J. Stationary and drifting spiral waves of excitation in isolated cardiac muscle. Nature 335, 349–351 (1992).

    Article  ADS  Google Scholar 

  5. Siegert, F. & Weijer, C. Analysis of optical density wave propagation and cell movement in the cellular slime mold dictyostelium discoideum. Physica D 49, 224–232 (1991).

    Article  ADS  Google Scholar 

  6. Gorelova, N. A. & Bures, J. Spiral waves of spreading depression in the isolated chicken retina. Neurobiology 14, 353–363 (1983).

    Article  CAS  Google Scholar 

  7. Lechleiter, J., Girard, S., Peralta, E. & Clapham, D. Spiral calcium wave propagation and annihilation in xenopus laevis oocytes. Science 252, 123–126 (1991).

    Article  ADS  CAS  Google Scholar 

  8. Krinsky, V. I. (ed.) Self-organization: Autowaves and Structures far from Equilibrium (Springer, Berlin, 1984).

  9. Winfree, A. T. & Strogatz, S. H. Organizing centers for three-dimensional chemical waves. Nature 311, 611–615 (1984).

    Article  ADS  CAS  Google Scholar 

  10. Swinney, H. L. & Krinsky, V. I. (eds.) Waves and patterns in chemical and biological media. Physica D 49, (1991).

  11. Keener, J. P. & Tyson, J. J. The dynamics of scroll waves in excitable media. SIAM Rev. 34, 1–39 (1992).

    Article  MathSciNet  Google Scholar 

  12. Schütze, J., Steinbock, O. & Müller, S. C. Forced vortex interaction and annihiliation in an active medium. Nature 356, 45–47 (1992).

    Article  ADS  Google Scholar 

  13. Steinbock, O., Schütze, J. & Müller, S. C. Electrical-field-induced drift and deformation of spiral waves in an excitable medium. Phys. Rev. Lett. 68, 248–251 (1992).

    Article  ADS  CAS  Google Scholar 

  14. Steinbock, O., Zykov, V. & Müller, S. C. Control of spiral-wave dynamics in active media by periodic modulation of excitability. Nature 366, 322–324 (1993).

    Article  ADS  CAS  Google Scholar 

  15. Welsh, B., Gomatam, S. & Burgess, A. Three-dimensional chemical waves in the Belousov-Zhabo-tinsky reaction. Nature 304, 611–614 (1983).

    Article  ADS  Google Scholar 

  16. Jahnke, W., Henze, C. & Winfree, A. Chemical vortex dynamics in three-dimensional excitable media. Nature 336, 662–665 (1988).

    Article  ADS  CAS  Google Scholar 

  17. Panfilov, A. V., Rudenko, A. N. & Krinsky, V. I. Vortex rings in three-dimensional active media with diffusion in two components. Biophysics 31, 926–931 (1986).

    Google Scholar 

  18. Biktahsev, V. N., Holden, A. V. & Zhang, H. Tension of organizing filaments of scroll waves. Phil. Trans. R. Soc. Lond. A 347, 611–630 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  19. Mironov, S., Vinson, M., Mulvey, S. & Pertsov, A. Destabilizaiton of three-dimensional rotating chemical waves in an inhomobeneous BZ reaction. J. Phys. Chem. 100, 1975–1983 (1996).

    Article  CAS  Google Scholar 

  20. Pertsov, A. M., Aliev, R. R. & Krinsky, V. I. Three-dimensional twisted vortices in an excitable chemical medium. Nature 345, 419–421 (1990).

    Article  ADS  CAS  Google Scholar 

  21. Pertsov, A. M., Vinson, M. & Müller, S. C. Three-dimensional reconstruction of organizing centers in excitable chemical media. Physica D 63, 233–235 (1993).

    Article  ADS  Google Scholar 

  22. Keener, J. P. & Tyson, J. J. Helical and circular scroll wave filaments. Physica D 44, 191–202 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  23. Aliev, R. R. & Rovinsky, A. B. Spiral waves in the homogeneous and inhomogeneous Belousov-Zhabotinsky reaction. J. Phys. Chem. 96, 732–736 (1992).

    Article  CAS  Google Scholar 

  24. Keener, J. P. The dynamics of three-dimensional scroll waves in excitable media. Physica D 31, 269–276 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  25. Agladze, K. I., Kocharyan, R. A. & Krinsky, V. I. Direct observation of vortex ring collapse in a chemically active medium. Physica D 49, 1–4 (1991).

    Article  ADS  CAS  Google Scholar 

  26. Rudenko, A. N. & Panfilov, A. V. Drift and interaction of vortices in two-dimensional heterogeneous active medium. Studia Biophysica 98, 183–188 (1983).

    Google Scholar 

  27. Pertsov, A. M., Davidenko, J. M., Salomonsz, R., Baxter, W. T. & Jalife, J. Spiral waves of excitation underlie reentrant activity in isolated cardiac muscle. Circ. Res. 72, 631–650 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vinson, M., Mironov, S., Mulvey, S. et al. Control of spatial orientation and lifetime of scroll rings in excitable media. Nature 386, 477–480 (1997). https://doi.org/10.1038/386477a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/386477a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing