Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A new class of uracil-DNA glycosylases related to human thymine-DNA glycosylase

Abstract

MISPAIRS in DNA of guanine with uracil and thymine can arise as a result of deamination of cytosine and 5-methylcytosine, respectively. In humans such mispairs are removed by thymine-DNA glycosylase (TDG)1–3. By deleting the carboxy and amino termini of this enzyme we have identified a core region capable of processing G/U but not G/T mispairs. We have further identified two bacterial proteins with strong sequence homology to this core and shown that the homologue from Escherichia coli (dsUDG) can remove uracil from G/U mispairs. This enzyme is likely to act as a back-up to the highly efficient and abundant enzyme uracil-DNA glycosylase (UDG) which is found in most organisms. Pupating insects have been reported to lack UDG activity4, but we have identified an enzyme similar to dsUDG in cell lines from three different insect species. These data imply the existence of a family of double-strand-specific uracil-DNA glycosylases which, although they are subservient to UDG in most organisms, may constitute the first line of defence against the mutagenic effects of cytosine deamination in insects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Neddermann, P. et al. J. Biol. Chem. 271, 12767–12774 (1996).

    Article  CAS  Google Scholar 

  2. Wiebauer, K. & Jiricny, J. Nature 339, 234–236 (1989).

    Article  ADS  CAS  Google Scholar 

  3. Neddermann, P. & Jiricny, J. Proc. Natl Acad. Sci. USA 91, 1642–1646 (1994).

    Article  ADS  CAS  Google Scholar 

  4. Dudley, B., Hammond, A. & Deutsch, W. A. J. Biol. Chem. 267, 11964–11967 (1992).

    CAS  PubMed  Google Scholar 

  5. Neddermann, P. & Jiricny, J. J. Biol. Chem. 268, 21218–21224 (1993).

    CAS  PubMed  Google Scholar 

  6. Wang, Z. & Mosbaugh, D. W. J. Biol. Chem. 264, 1163–1171 (1989).

    CAS  PubMed  Google Scholar 

  7. Mol, C. D. et al. Cell 80, 869–878 (1995).

    Article  CAS  Google Scholar 

  8. Sawa, R., McAuley Hecht, K., Brown, T. & Pearl, L. Nature 373, 487–493 (1995).

    Article  ADS  Google Scholar 

  9. Seeberg, E., Eide, L. & Bjoras, M. Trends Biochem. 20, 391–397 (1995).

    Article  CAS  Google Scholar 

  10. Varshney, U. & van de Sande, J. H. Nucleic Acids Res. 17, 813 (1989).

    Article  CAS  Google Scholar 

  11. Duncan, B. K. J. Bacteriol. 164, 689–695 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Deutsch, W. A. Insect. Mol. Biol. 4, 1–5 (1995).

    Article  CAS  Google Scholar 

  13. Morgan, A. R. & Chlebek, J. J. Biol. Chem. 264, 9911–9914 (1989).

    CAS  PubMed  Google Scholar 

  14. Schneider, I. J. Embryol. exp. Morph. 27, 353–365 (1972).

    CAS  Google Scholar 

  15. Wiebauer, K. & Jiricny, J. Proc. Natl Acad. Sci. USA 87, 5842–5845 (1990).

    Article  ADS  CAS  Google Scholar 

  16. Tomilin, N. V. & Aprelikova, O. N. in International Review of Cytology (eds Bourne, G. H., Jeon, K. W. & Friedlander, M.) 125–179 (Academic, San Diego, 1989).

    Google Scholar 

  17. Duncan, B. K. & Weiss, B. J. Bacteriol. 151, 750–755 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Ausubel, F. M. et al. Curr. Prot. Mol. Biol. (Wiley, New York, 1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gallinari, P., Jiricny, J. A new class of uracil-DNA glycosylases related to human thymine-DNA glycosylase. Nature 383, 735–738 (1996). https://doi.org/10.1038/383735a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/383735a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing