Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Detection of postseismic fault-zone collapse following the Landers earthquake

Abstract

STRESS changes caused by fault movement in an earthquake induce transient aseismic crustal movements in the earthquake source region that continue for months to decades following large events1–4. These motions reflect aseismic adjustments of the fault zone and/or bulk deformation of the surroundings in response to applied stresses2,5–7, and supply information regarding the inelastic behaviour of the Earth's crust. These processes are imperfectly understood because it is difficult to infer what occurs at depth using only surface measurements2, which are in general poorly sampled. Here we push satellite radar interferometry to near its typical artefact level, to obtain a map of the postseismic deformation field in the three years following the 28 June 1992 Landers, California earthquake. From the map, we deduce two distinct types of deformation: afterslip at depth on the fault that ruptured in the earthquake, and shortening normal to the fault zone. The latter movement may reflect the closure of dilatant cracks and fluid expulsion from a transiently over-pressured fault zone6–8.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Okada, A. & Nagata, T. Bull. Earthq. Res. Inst. Tokyo Univ. 31, 151–167 (1953).

    Google Scholar 

  2. Thatcher, W. J. geophys. Res. 88, 5893–5902 (1983).

    Article  ADS  Google Scholar 

  3. Thatcher, W. R. Soc. N.Z. Bull. 24, 245–2726 (1986).

    Google Scholar 

  4. Savage, J. C. & Plafker, G. J. geophys. Res. 96, 4325–4335 (1991).

    Article  ADS  Google Scholar 

  5. Thatcher, W. & Rundle, J. B. J. geophys. Res. 89, 7631–7640 (1984).

    Article  ADS  Google Scholar 

  6. Sleep, N. H. & Blanpied, M. L. Nature 359, 687–692 (1992).

    Article  ADS  Google Scholar 

  7. Byerlee, J. Geology 21, 303–306 (1993).

    Article  ADS  Google Scholar 

  8. Savage, J. C., Lisowski, M. & Svarc, J. L. J. geophys. Res. 99, 13757–13765 (1994).

    Article  ADS  Google Scholar 

  9. Gabriel, A. K., Goldstein, R. M. & Zebker, H. A. J. geophys. Res. 94, 9183–9191 (1989).

    Article  ADS  Google Scholar 

  10. Massonnet, D. et al. Nature 364, 138–142 (1993).

    Article  ADS  Google Scholar 

  11. Massonnet, D., Feigl, K. L., Rossi, M. & Adragna, F. Nature 369, 227–230 (1994).

    Article  ADS  Google Scholar 

  12. Peltzer, G. & Rosen, P. Science 268, 1333–1336 (1995).

    Article  ADS  CAS  Google Scholar 

  13. Massonnet, D. & Feigl, K. L. Geophys. Res. Lett. 22, 1541–1544 (1995).

    Article  ADS  Google Scholar 

  14. Murakami, M., Tobita, M., Saito, T. & Masharu, H. J. geophys. Res. 101, 9183–9191 (1996).

    Article  Google Scholar 

  15. Massonnet, D., Feigl, K. L., Vadon, H. & Rossi, M. Geophys. Res. Lett. 23, 969–972 (1996).

    Article  ADS  Google Scholar 

  16. Goldstein, R. M., Engelhardt, H., Kamb, B. & Frolich, R. M. Science 262, 1525–1530 (1993).

    Article  ADS  CAS  Google Scholar 

  17. Massonnet, D., Briole, P. & Arnaud, A. Nature 375, 567–570 (1995).

    Article  ADS  CAS  Google Scholar 

  18. Massonnet, D. Etude cfe Principe d'une Détection de Mouvements Tectoniques par Radar (Int. Memo No. 326, Centre National d'Etudes Spatiales, Toulouse, 1985).

    Google Scholar 

  19. Massonnet, D. & Rabaute, T. IEEE Trans. Geosci. Rem. Sensing 31, 455–464 (1993).

    Article  ADS  Google Scholar 

  20. Massonnet, D. & Feigl, K. L. Geophys. Res. Lett. 22, 1537–1540 (1995).

    Article  ADS  Google Scholar 

  21. Massonnet, D., Vadon, & Rossi, M. H. IEEE Trans. Geosci. Rem. Sensing 34, 489–497 (1996).

    Article  ADS  Google Scholar 

  22. Feigl, K. L., Sergent, A. & Jacq, D. Geophys. Res. Lett. 22, 1037–1040 (1995).

    Article  ADS  Google Scholar 

  23. Zebker, H. A., Rosen, P., Goldstein, R. M., Gabriel, A. & Werner, C. L. J. geophys. Res. 99, 617–634 (1994).

    Article  Google Scholar 

  24. Wald, D. J. & Heaton, T. H. Bull. seism. Soc. Am. 84, 668–691 (1994).

    Google Scholar 

  25. Freymuller, J., King, N. E. & Segall, P. Bull. seism. Soc. Am. 84, 646–659 (1994).

    Google Scholar 

  26. Shen, Z., Jackson, D., Feng, Y., Kim, M. & Cline, M. Bull. seism. Soc. Am. 84, 780–791 (1994).

    Google Scholar 

  27. California Division Mines and Geology Preliminary Fault Activity Map of California (Calif. Dept. of Conservation, Sacramento, 1992).

  28. US Geological Survey Digital Elevation Models: Data Users Guide 5 1–34 (US Govt Print. Off., Washington DC, 1993).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Massonnet, D., Thatcher, W. & Vadon, H. Detection of postseismic fault-zone collapse following the Landers earthquake. Nature 382, 612–616 (1996). https://doi.org/10.1038/382612a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/382612a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing