Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Unrealistic desiccation of marine stratocumulus clouds by enhanced solar absorption

Abstract

THE absorption of solar radiation by clouds affects the distribution of heat that drives atmospheric and ocean circulations. Many investigators have measured cloud solar absorption values exceeding theoretical estimates, although the discrepancies have been regarded as inconclusive1. But more recent measurements indicate that clouds absorb up to three times as much solar energy than conventional theory predicts2,3. Marine stratocumulus clouds are particularly sensitive to solar absorption because marine boundary-layer mixing is typically driven by cloud radiative processes. Here we present model simulations of a stratocumulus-topped marine boundary layer, incorporating different levels of solar absorption. With conventional absorption, the simulations reproduce observed cloud behaviour. But those with artificially enhanced absorption result in an unrealistic daytime depletion of cloud water, because a reduction in cloud radiative cooling results in decreased boundary-layer mixing. Moreover, we show that it is unlikely that liquid water or any plausible dissolved material can absorb the energy required by the recent measurements of solar absorption. Our results therefore indicate that either enhanced solar absorption occurs only in clouds other than marine stratocumulus, or the enhancement of cloud solar absorption indicated by recent measurements2,3 is overestimated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Stephens, G. L. & Tsay, S.-C. Q. Jl. R. met. Soc. 116, 671–704 (1990).

    Article  ADS  Google Scholar 

  2. Cess, R. D. et al. Science 267, 496–499 (1995).

    Article  ADS  CAS  Google Scholar 

  3. Pilewskie, P. & Valero, F. P. J. Science 267, 1626–1629 (1995).

    Article  ADS  CAS  Google Scholar 

  4. Lilly, D. K. Q. Jl. R. met. Soc. 94, 292–309 (1968).

    Article  ADS  Google Scholar 

  5. Bougeault, P. J. atmos. Sci. 42, 2826–2843 (1985).

    Article  ADS  Google Scholar 

  6. Chen, C. & Cotton, W. R. J. atmos. Sci. 44, 2951–2977 (1987).

    Article  ADS  Google Scholar 

  7. Turton, J. D. & Nicholls, S. Q. Jl. R. met. Soc. 113, 969–1009 (1987).

    Article  ADS  Google Scholar 

  8. Duynkerke, P. G. Mon. Weath. Rev. 117, 1710–1725 (1989).

    Article  ADS  Google Scholar 

  9. Rogers, D. P. & Koracin, D. J. atmos. Sci. 49, 1473–1486 (1992).

    Article  ADS  Google Scholar 

  10. Ackerman, A. S., Toon, O. B. & Hobbs, P. V. J. atmos. Sci. 52, 1204–1236 (1995).

    Article  ADS  Google Scholar 

  11. Nicholls, S. Q. Jl. R. met. Soc. 110, 783–820 (1984).

    Article  ADS  Google Scholar 

  12. Kogan, Y. L., Khairoutdinov, M. P., Lilly, D. K., Kogan, Z. N. & Liu, Q. J. atmos. Sci. 52, 2923–2940 (1995).

    Article  ADS  Google Scholar 

  13. Chou, M.-D., Arking, A., Otterman, J. & Ridgeway, W. L. Geophys. Res. Lett. 22, 1885–1888 (1995).

    Article  ADS  Google Scholar 

  14. Li, Z., Barker, H. W. & Moreau, L. Nature 376, 486–490 (1995).

    Article  ADS  CAS  Google Scholar 

  15. Hayasaka, T., Kikuchi, N. & Tanaka, M. J. appl. Met. 34, 1047–1055 (1995).

    Article  ADS  Google Scholar 

  16. Ackerman, S. A. & Cox, S. K. J. appl. Met. 20, 1510–1515 (1981).

    Article  Google Scholar 

  17. Painter, L. R., Birkhoff, R. D. & Arakawa, E. T. J. chem. Phys. 51, 243–251 (1969).

    Article  ADS  CAS  Google Scholar 

  18. Palmer, K. F. & Williams, D. J. opt. Soc. Am. 64, 1107–1110 (1974).

    Article  ADS  CAS  Google Scholar 

  19. Downing, H. D. & Williams, D. J. Geophys. Res. 80, 1656–1661 (1975).

    Article  ADS  CAS  Google Scholar 

  20. Bohren, C. F. & Huffman, D. R. Absorption and Scattering of Light by Small Particles Ch. 9 (Wiley, New York, 1983).

    Google Scholar 

  21. Galloway, J. N., Likens, G. E., Keene, W. C. & Miller, J. M. J. geophys. Res. 87, 8771–8786 (1982).

    Article  ADS  CAS  Google Scholar 

  22. Warneck, P. Chemistry of the Natural Atmosphere 405–406 (Academic, London, 1988).

    Google Scholar 

  23. Chylek, P., Ramaswamy, V. & Cheng, R. J. J. atmos. Sci. 41, 3076–3084 (1984).

    Article  ADS  CAS  Google Scholar 

  24. Toon, O. B. & Ackerman, T. P. Appl. Opt. 20, 3657–3660 (1981).

    Article  ADS  CAS  Google Scholar 

  25. Twohy, C. H., Clarke, A. D., Warren, S. G., Radke, L. F. & Charlson, R. J. J. geophys. Res. 94, 8623–8631 (1989).

    Article  ADS  Google Scholar 

  26. Cachier, H. & Ducret, J. Nature 352, 228–230 (1991).

    Article  ADS  Google Scholar 

  27. Cachier, H., Brémond, M.-P. & Baut-Ménard, P. Nature 352, 371–373 (1989).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ackerman, A., Toon, O. Unrealistic desiccation of marine stratocumulus clouds by enhanced solar absorption. Nature 380, 512–515 (1996). https://doi.org/10.1038/380512a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/380512a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing