Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A one-plume model of martian mantle convection

Abstract

FOR at least the past two billion years, volcanism on Mars has been restricted to the Tharsis region1. In addition, most tectonic activity on Mars2, together with the long-wavelength topography and the non-hydrostatic gravity field3, are strongly correlated with Tharsis, implying a close connection with deep mantle processes. These observations have motivated suggestions4 that the thermal convection in the martian mantle is very different from that in the Earth's mantle, being dominated by a single large upwelling under Tharsis. Two-dimensional convection modelling has shown that the presence of an endothermic phase boundary in the lowermost mantle of a planet has a strong influence on convection, suppressing all but one or two upwellings5. Recent experiments6 indicate that such a boundary may indeed exist on Mars. Here we investigate the convective evolution of the martian mantle using a three-dimensional model which incorporates an endothermic phase transition close to the core–mantle boundary. We find that a single-plume pattern of convection gradually develops, and we show that this is consistent with the distribution of volcanism, the shape of the gravity field, and the gross tectonic stress pattern of Mars.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Neukum, G. & Hiller, K. J. geophys. Res. 86, 3097–3121 (1981).

    Article  ADS  Google Scholar 

  2. Banerdt, W. B., Golombek, M. P. & Tanaka, K. L. in Mars (eds Kieffer, H. H. et al.) 249–297 (Univ. Arizona Press, Tucson, 1992).

    Google Scholar 

  3. Esposito, P. B. et al in Mars (eds Kieffer, H. H. et al.) 209–248 (Univ. Arizona Press, Tucson, 1992).

    Google Scholar 

  4. Phillips, R. J. & Ivins, E. R. Phys. Earth planet. Inter. 19, 107–148 (1979).

    Article  ADS  Google Scholar 

  5. Weinstein, S. J. geophys. Res. 100, 11719–11728 (1995).

    Article  ADS  Google Scholar 

  6. Fei, Y., Prewitt, C. T., Mao, H.-K. & Bertka, C. M. Science 268, 1892–1894 (1995).

    Article  ADS  CAS  Google Scholar 

  7. Schubert, G., Bercovici, D. & Glatzmeier, G. J. geophys. Res. 95, 14105–14139 (1990).

    Article  ADS  Google Scholar 

  8. Zhou, H., Breuer, D., Yuen, D. & Spohn, T. Geophys. Res. Lett. 22, 1945–1948 (1995).

    Article  ADS  Google Scholar 

  9. Christensen, U. R. & Yuen, D. A. J. geophys. Res. 90, 10291–10300 (1985).

    Article  ADS  Google Scholar 

  10. Machetel, P. & Weber, P. Nature 350, 55–57 (1991).

    Article  ADS  Google Scholar 

  11. Tackley, P. J., Stevenson, D. J., Glatzmeier, G. A. & Schubert, G. J. geophys. Res. 99, 15877–15901 (1994).

    Article  ADS  Google Scholar 

  12. Schubert, G. & Spohn, T. J. geophys. Res. 95, 14095–14104 (1990).

    Article  ADS  Google Scholar 

  13. Boss, A. P., Angevine, C. L. & Sacks, I. S. Phys. Earth planet. Inter. 36, 328–336 (1984).

    Article  ADS  Google Scholar 

  14. Phillips, R. J., Sleep, N. H. & Banerdt, W. B. J. geophys. Res. 95, 5089–5100 (1990).

    Article  ADS  Google Scholar 

  15. Karato, S. Nature 319, 309–310 (1986).

    Article  ADS  Google Scholar 

  16. Sleep, N. H. & Phillips, R. J. J. geophys. Res. 90, 4469–4490 (1985).

    Article  ADS  Google Scholar 

  17. Banerdt, W. B., Phillips, R. J., Sleep, N. H. & Saunders, R. S. J. geophys. Res. 87, 9723–9733 (1982).

    Article  ADS  Google Scholar 

  18. Schmeling, H. & Marquart, G. Geophys. Res. Lett. 17, 2417–2420 (1990).

    Article  ADS  Google Scholar 

  19. Machetel, P., Rabinowicz, M. & Bernadet, P. Geophys. astrophys. Fluid Dyn. 37, 57–84 (1986).

    Article  ADS  Google Scholar 

  20. Balmino, G., Moynot, B. & Valès, N. J. geophys. Res. 87, 9735–9746 (1982).

    Article  ADS  Google Scholar 

  21. Zhang, S. & Christensen, U. R. Geophys. J. Int. 114, 531–547 (1993).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harder, H., Christensen, U. A one-plume model of martian mantle convection. Nature 380, 507–509 (1996). https://doi.org/10.1038/380507a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/380507a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing