Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Transition from spirals to defect turbulence driven by a convective instability

Abstract

SPATIAL and temporal order often arises in homogeneous systems driven away from equilibrium1. Sufficiently far from equilibrium, however, highly ordered behaviour typically degenerates into spatiotemporal chaos. The mechanisms underlying this qualitative transition can be clarified by studying a model system comprising a continuous field of coupled nonlinear oscillators. Analyses of the nonlinear partial differential equation that describes this model elucidate generic dynamical features that characterize spatially extended nonequilibrium systems; moreover, they predict an archetypal pathway2,3 for the development of spatiotemporal chaos through the spontaneous generation of topological singularities, or 'defects'. The resulting highly irregular state, known as 'defect-mediated turbulence', has not, however, been observed previously in a real system. Here we report an experimental observation of the transition from ordered behaviour to defect-mediated turbulence in the pattern-forming chemical system known as the Belousov–Zhabotinsky reaction. A regular spiral pattern dominates in the ordered state, but as the system is driven further from equilibrium, the spiral becomes unstable and generates hundreds of defects. This observation substantiates a basic mechanism which should underlie the transition to spatio-temporal chaos in a wide variety of pattern-forming systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cross, M. C. & Hohenberg, P. C. Rev. mod. Phys. 65, 851–1112 (1993).

    Article  CAS  ADS  Google Scholar 

  2. Coullet, P., Gil, L. & Lega, J. Phys. Rev. Lett. 62, 1619–1622 (1989).

    Article  CAS  ADS  Google Scholar 

  3. Weber, A., Kramer, L., Aranson, I. S. & Aranson, L. Physica D61, 279–283 (1992).

    Google Scholar 

  4. Zaikin, A. N. & Zhabotisnky, A. M. Nature 225, 535–537 (1970).

    Article  CAS  ADS  Google Scholar 

  5. Winfree, A. T. Science 175, 634–636 (1972).

    Article  CAS  ADS  Google Scholar 

  6. Agladze, K. I., Krinsky, V. I. & Pertsov, A. M. Nature 308, 834–835 (1984).

    Article  CAS  ADS  Google Scholar 

  7. Maselko, J. & Showalter, K. Physica D49, 21–32 (1991).

    CAS  Google Scholar 

  8. Steinbock, O., Zykov, V. & Müller, S. C. Nature 366, 322–324 (1993).

    Article  CAS  ADS  Google Scholar 

  9. Markus, M., Kloss, G. & Kusch, I. Nature 371, 402–404 (1994).

    Article  CAS  ADS  Google Scholar 

  10. Nagy-Ungvarai, Zs. & Müller, S. C. Int. J. Bifurc. Chaos 4, 1257–1264 (1994).

    Article  Google Scholar 

  11. Noszticzius, Z., Horsthemke, W., McCormick, W. D., Swinney, H. L. & Tam, W. Y. Nature 329, 619–620 (1987).

    Article  CAS  ADS  Google Scholar 

  12. Skinner, G. & Swinney, H. L. Physica D48, 1–16 (1991).

    CAS  Google Scholar 

  13. Dulos, E., Boissonade, J. & De Kepper, P. Physica A188, 120–131 (1992).

    Article  CAS  Google Scholar 

  14. Oyang, Q. & Swinney, H. L. Nature 352, 610–612 (1991).

    Article  ADS  Google Scholar 

  15. Ouyang, Q. & Swinney, H. L. Chaos 1, 411–420 (1991).

    Article  ADS  Google Scholar 

  16. Kramer, L., Hynne, F., Sørenson, P. G. & Walgraef, D. Chaos 4, 443–452 (1994).

    Article  CAS  ADS  Google Scholar 

  17. Sørenson, P. G. & Hynne, F. J. phys. Chem. 93, 5467–5474 (1989).

    Article  Google Scholar 

  18. Landau, L. D. & Lifshitz, E. M. Fluid Mechanics (Pergamon, Oxford, 1959).

    Google Scholar 

  19. Huerre, P. in Propagation Far from Equilibrium (ed. Weisfred, J. E., Brand, H. R., Manneville, P., Albinet, G. & Boccara, N.) 340–353 (Springer, Berlin, 1988).

    Book  Google Scholar 

  20. Manneville, P. in Structures Dissipatives, Chaos et Turbulence 349–352 (Aléa-Saclay, 1991).

    Google Scholar 

  21. Fauve, S. in Instabilities and Nonequilibrium Structures (eds Tirapegui, E. & Villaroel, D.) 63–88 (Reidel, Dordrecht, 1987).

    Book  Google Scholar 

  22. Janiaud, B., Pumir, A., Bensimon, D., Croquette, V., Richter, H. & Kramer, L. Physica D55, 269–286 (1992).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ouyang, Q., Flesselles, JM. Transition from spirals to defect turbulence driven by a convective instability. Nature 379, 143–146 (1996). https://doi.org/10.1038/379143a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/379143a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing