Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A geochemical model for the formation of hydrothermal carbonates on Mars

Abstract

IT IS often argued1-3 that substantially more carbon dioxide and water were degassed from the martian interior than can be found at present in the atmosphere, polar caps and regolith. Calculations have shown that atmospheric escape cannot account for all of the missing volatiles4. Suggestions that carbon dioxide is stored as marine or lacustrine deposits5, are challenged by Earth-based and spacecraft remote-sensing data6,7. Moreover, recent modelling of the martian atmosphere suggests that rainfall or open bodies of water are in any case unlikely to have persisted for extended periods of time8,9. Hydrothermal carbonates therefore provide a possible solution to this dilemma. Using an accessible terrestrial system (Iceland) as a guide to the underlying processes, and a host rock composition inferred from the least-altered martian meteorite10, we present a geochemical model for the formation of carbonates in possible martian hydrothermal systems. Our results suggest that an extensive reservoir of carbonate minerals—equivalent to an atmospheric pressure of carbon dioxide of at least one bar—could have been sequestered beneath the surface by widespread hydrothermal activity in the martian past.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Carr, M. H. Icarus 68, 187–216 (1986).

    Article  ADS  CAS  Google Scholar 

  2. Fanale, F. P., Postawko, S. E., Pollack, J. B., Carr, M. H. & Pepin, R. O. in Mars (eds Kieffer, H. H., Jakosky, B. M., Snyder, C. W. & Matthews, M. S.) 1135–1179 (Univ. of Arizona Press, Tucson, 1992).

    Google Scholar 

  3. Squyres, S. W., Clifford, S. M., Kuzmin, R. O., Zimbleman, J. R. & Costard, F. M. in Mars (eds Kieffer, H. H., Jakosky, B. M., Snyder, C. W. & Matthews, M. S.) 523–556 (Univ. of Arizona Press, Tucson, 1992).

    Google Scholar 

  4. Jakosky, B. M., Pepin, R. O., Johnson, R. E. & Fox, J. L. Icarus 111, 271–288 (1994).

    Article  ADS  CAS  Google Scholar 

  5. Nedell, S. S., Squyres, S. W. & Andersen, D. W. Icarus 70, 409–441 (1987).

    Article  ADS  Google Scholar 

  6. Blaney, D. L. & McCord, T. B. J. geophys. Res. 94, 10159–10166 (1990).

    Article  ADS  Google Scholar 

  7. Pollack, J. B. et al. J. geophys. Res. 95, 14595–14627 (1990).

    Article  ADS  Google Scholar 

  8. Kasting, J. F. Icarus 94, 1–13 (1991).

    Article  ADS  CAS  Google Scholar 

  9. Haberle, R. M., Tyler, D., McKay, C. P. & Davis, W. L. Icarus 109, 102–120 (1994).

    Article  ADS  CAS  Google Scholar 

  10. Stolper, E. & McSween, H. Y. Jr Geochim. cosmochim. Acta 43, 1475–1498 (1979).

    Article  ADS  CAS  Google Scholar 

  11. Newsom, H. E. Icarus 44, 207–216 (1980).

    Article  ADS  Google Scholar 

  12. Arnörnsson, S., Gunnlaugsson, E. & Svavarsson, H. Geochim. cosmochim. Acta 47, 547–566 (1983).

    Article  ADS  Google Scholar 

  13. Sveinbjornsdóttir, A. E., Coleman, M. L. & Yardley, B. W. D. Contr. Miner. Petrol. 94, 99–109 (1986).

    Article  ADS  Google Scholar 

  14. Pálmason, G. & Sæmundsson, K. A. Rev. Earth Planet. Sci. 2, 25–50 (1974).

    Article  ADS  Google Scholar 

  15. Mehegan, J. M., Robinson, P. T. & Delaney, J. R. J. geophys. Res. 87, 6511–6524 (1982).

    Article  ADS  CAS  Google Scholar 

  16. Exley, R. A. J. geophys. Res. 87, 6547–6557 (1982).

    Article  ADS  CAS  Google Scholar 

  17. Viereck, L. G., Griffin, B. J., Schmincke, H.-U. & Pritchard, R. G. J. geophys. Res. 87, 6459–6476 (1982).

    Article  ADS  CAS  Google Scholar 

  18. Lonker, S. W., Franzon, J. & Kristmannsdóttir, H. Am. J. Sci. 293, 605–670 (1993).

    Article  ADS  CAS  Google Scholar 

  19. Helgeson, H. C. in Geochemistry of Hydrothermal Ore Deposit 3rd edn (ed. Barnes, H. L.) 568–610 (Wiley, New York, 1979).

    Google Scholar 

  20. Wolery, T. J. & Daveler, S. A. EQ6. A Computer Program for Reaction Path Modeling of Aqueous Geochemical Systems. Theoretical Manual, User's Guide, and Related Documentation. (Version 7) (UCRL-MA-110662 PT IV, Lawrence Livermore Nat. Lab., Livermore, CA, 1986).

    Google Scholar 

  21. Carmichael, I. S. E. J. Petrology 5, 435–460 (1964).

    Article  ADS  CAS  Google Scholar 

  22. Mittlefehldt, D. Meteoritics 29, 214–221 (1994).

    Article  ADS  CAS  Google Scholar 

  23. Romanek, C. S. et al. Nature 372, 655–657 (1994).

    Article  ADS  CAS  Google Scholar 

  24. Treiman, A. H. Meteoritics 30, 294–302 (1995).

    Article  ADS  CAS  Google Scholar 

  25. Jull, A. J. T., Eastoe, C. J., Xue, S. & Herzog, G. F. Meteoritics 30, 311–318 (1995).

    Article  ADS  CAS  Google Scholar 

  26. Shock, E. L. Origins Life Evol. Biosph. 22, 67–107 (1992).

    Article  ADS  CAS  Google Scholar 

  27. Walter, M. R. & Des Marias, D. J. Icarus 101, 129–143 (1993).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Griffith, L., Shock, E. A geochemical model for the formation of hydrothermal carbonates on Mars. Nature 377, 406–408 (1995). https://doi.org/10.1038/377406a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/377406a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing