Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Fully collapsed carbon nanotubes

Abstract

IT has been suggested1 that the tensile strength of carbon nanotubes2 might exceed that of other known fibres because of the inherent strength of the carbon–carbon bond. Calculations of the elastic properties of nanotubes confirm that they are extremely rigid in the axial direction and are most likely to distort perpendicular to the axis3'4. Carbon nanotubes with localized kinks and bends5'6, as well as minor radial deformations7'8, have been observed. Here we report the existence of multi-shelled carbon nanotubes whose overall geometry differs radically from that of a straight, hollow cylinder. Our observations reveal nanotubes that have suffered complete collapse along their length. Theoretical modelling demonstrates that, for a given range of tube parameters, a completely collapsed nanotube is favoured energetically over the more familiar 'inflated' form with a circular cross-section.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ross, P. E. Scient. Am. 265 (December), 24 (1991).

  2. Iijima, S. Nature 354, 56–58 (1991).

    Article  ADS  CAS  Google Scholar 

  3. Overney, G., Zhong, W. & Tomanek, D. Z. Phys. D27, 93–96 (1992).

    Google Scholar 

  4. Tersoff, J. & Ruoff, R. S. Phys. Rev. Lett. 73, 676–679 (1994).

    Article  ADS  CAS  Google Scholar 

  5. Endo, M. et al. J. Phys. Chem. Solids 54, 1841–1848 (1993).

    Article  ADS  CAS  Google Scholar 

  6. Despres, J. F., Daguerre, E. & Kafdi, K. Carbon 33, 87–92 (1995).

    Article  CAS  Google Scholar 

  7. Ruoff, R. S., Tersoff, J., Lorents, D. C., Subramoney, S. & Chan, B. Nature 364, 514–516 (1993).

    Article  ADS  CAS  Google Scholar 

  8. Hiura, H., Ebbesen, T. W., Fujita, J., Tanigaki, K. & Takada, T. Nature 367, 148–151 (1994).

    Article  ADS  CAS  Google Scholar 

  9. Kratschmer, W., Lamb, L. D., Fostiropoulos, K. & Huffman, D. R. Nature 347, 354–358 (1990).

    Article  ADS  Google Scholar 

  10. Ebbesen, T. W. & Ajayan, P. M. Nature 358, 220–222 (1992).

    Article  ADS  CAS  Google Scholar 

  11. Ebbesen, T. W., Ajayan, P. M., Hiura, H. & Tanigaki, K. Nature 367, 519 (1994).

    Article  ADS  Google Scholar 

  12. Colbert, D. T. et al. Science 266, 1218–1222 (1994).

    Article  ADS  CAS  Google Scholar 

  13. Adams, G. B., Sankey, O. F., Page, J. B., O'Keefe, M. & Drabold, D. A. Science 256, 1792–1795 (1992).

    Article  ADS  Google Scholar 

  14. Robertson, D. H., Brenner, D. W. & Mintmire, J. W. Phys. Rev. B45, 12592–12595 (1992).

    Article  CAS  Google Scholar 

  15. Sawada, S.-I. & Hamada, N. Solid St. Commun. 83, 917–919 (1992).

    Article  ADS  CAS  Google Scholar 

  16. Safran, S. A. Statistical Thermodynamics of Surfaces and Interfaces (Addison Wesley, Reading, MA, 1994).

    MATH  Google Scholar 

  17. Blase, X., Rubio, A., Louie, S. G. & Cohen, M. L. Europhys. Lett. 28, 335–340 (1994).

    Article  ADS  CAS  Google Scholar 

  18. Girifalco, L. A. & Lad, R. A. J. chem. Phys. 25, 693–697 (1956).

    Article  ADS  CAS  Google Scholar 

  19. Bacon, R. J. appl. Phys. 31, 283–290 (1960).

    Article  ADS  Google Scholar 

  20. Iijima, S. in Proceedings Thirty-seventh Annual Meeting Electron Microscopy Society of America 392–395 (Claitor's, San Antonio, TX, 1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chopra, N., Benedict, L., Crespi, V. et al. Fully collapsed carbon nanotubes. Nature 377, 135–138 (1995). https://doi.org/10.1038/377135a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/377135a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing