Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Possible coexistence of s- and d-wave condensates in copper oxide superconductors

Abstract

SINCE the discovery of superconductivity in the layered copper oxide materials1, a number of microscopic models have been proposed. To know which of these should be considered further, it is important to determine empirically the symmetry of the superconducting order parameter (the wavefunction of the superconducting condensate). For some time there has been conflicting experimental evidence as to whether the superconducting condensate has s- or d-wave symmetry2; these terms, strictly correct only in tetragonal symmetry, are commonly used to denote whether the superconducting gap is finite in all directions at zero temperature or contains nodes. Tunnelling data along the c axis of these quasi-tetragonal copper oxides, perpendicular to the CuO2 planes, clearly show an s-wave character3,4. Conversely, tunnelling along the a or b axis of YBa2Cu3O7−δ has indicated a d-wave character of the wavefunction5–7, with one exception8. Here I propose that these and other apparently conflicting results can be explained in a consistent way if there exist in the copper oxide superconductors two condcnsatcs, with different symmetry but the same transition temperature—in other words, if there are two kinds of superconducting gap.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bednorz, J. G. & Müller, K. A. Z. Phys. B64, 189–193 (1986).

    Article  CAS  Google Scholar 

  2. Beasley, M. R. IEEE Trans. Appl. Supercond. 5, 141–151 (1995).

    Article  ADS  Google Scholar 

  3. Sun, A. G., Gajewski, D. A., Maple, M. B. & Dynes, R. C. Phys. Rev. Lett. 72, 2267–2270 (1994).

    Article  ADS  CAS  Google Scholar 

  4. Murakami, H., Ohbuchi, S., Hiramatsu, S. & Aoki, R. in Proc. 6th Int. Symp. on Superconductivity, Hiroshima, Japan, 1993 93–96 (Springer, Tokyo, 1994).

    Google Scholar 

  5. Wollman, D. A., Van Harlingen, D. J., Lee, W. C., Ginsberg, D. M. & Leggett, A. J. Phys. Rev. Lett. 71, 2134–2137 (1993).

    Article  ADS  CAS  Google Scholar 

  6. Brawner, D. A. & Ott, H. Phys. Rev. B (in the press).

  7. Kirtley, J. R. et al. Nature 373, 225–228 (1995).

    Article  ADS  CAS  Google Scholar 

  8. Chaudhari, P. & Lin, S.-Y. Phys. Rev. Lett. 72, 1084–1087 (1994).

    Article  ADS  CAS  Google Scholar 

  9. Binning, G., Baratoff, A., Hoenig, H. E. & Bednorz, J. G. Phys. Rev. Lett. 45, 1352–1355 (1980).

    Article  ADS  Google Scholar 

  10. Schooly, J. F., Hosler, W. R. & Cohen, M. L. Phys. Rev. Lett. 12, 474–475 (1964).

    Article  ADS  Google Scholar 

  11. Kresin, V. Z. & Wolf, S. A. Phys. Rev. B46, 6438–6471 (1992).

    Google Scholar 

  12. Battlog, B. Physics Today, June, 44–50 (1991).

  13. Deutscher, G. & Müller, K. A. Phys. Rev. Lett. 59, 1745–1747 (1987).

    Article  ADS  CAS  Google Scholar 

  14. Deutscher, G. & Simon, R. W. J. appl. Phys. 69, 4137–4139 (1991).

    Article  ADS  CAS  Google Scholar 

  15. Dimos, D., Chaudhari, P. & Mannhart, J. Phys. Rev. B41, 4038–4049 (1990).

    Article  ADS  CAS  Google Scholar 

  16. Tsuei, C. C. et al. Phys. Rev. Lett. 75, 593–596 (1994).

    Article  ADS  Google Scholar 

  17. Imai, I., Slichter, C. P., Paulukas, A. P. & Veal, B. Appl. magn. Reson. 3, 729–744 (1992).

    Article  CAS  Google Scholar 

  18. Bulut, N. & Scalapino, D. J. Phys. Rev. Lett. 67, 2898–2901 (1991).

    Article  ADS  CAS  Google Scholar 

  19. Ma, J. et al. Science 267, 862–865 (1995).

    Article  ADS  CAS  Google Scholar 

  20. Moler, K. A. et al. Phys. Rev. Lett. 73, 2744–2247 (1994).

    Article  ADS  CAS  Google Scholar 

  21. Bulut, N. & Scalapino, D. J. Phys. Rev. Lett. 68, 706–709 (1992).

    Article  ADS  CAS  Google Scholar 

  22. Takigawa, M., Smith, J. L. & Huits, W. L. Phys. Rev. B44, 7764–7767 (1991).

    Article  ADS  CAS  Google Scholar 

  23. Bankay, M., Mali, M., Roos, J., Mangelschots, I. & Brinkmann, D. Phys. Rev. B46, 11228–11231 (1992).

    Article  CAS  Google Scholar 

  24. Klein, N. et al. Phys. Rev. Lett. 71, 3355–3358 (1993).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, K. Possible coexistence of s- and d-wave condensates in copper oxide superconductors. Nature 377, 133–135 (1995). https://doi.org/10.1038/377133a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/377133a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing