Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Scaling of heating rates in solar coronal loops

Abstract

THE gas of the solar corona is at a temperature of several million degrees, orders of magnitude hotter than the underlying photosphere. The nature of the physical process that heats the solar corona (and the coronae of solar-type stars more generally) has been a long-standing puzzle. A number of plausible heating mechanisms have been proposed, but observations have so far been unable to discriminate between them1. Here we show that coronal heating exhibits scaling properties that should provide a powerful diagnostic of the underlying mechanism. The coronal magnetic field organizes the coronal plasma into loop-like features, which form the basic structural elements of the corona2. We demonstrate that the pressures and lengths of the coronal loops are statistically related, suggesting that the heating rate scales inversely with approximately the square of the loop length. Existing coronal heating theories make different predictions about what this scaling should be, and a model3–4 of energy dissipation by stressed coronal magnetic fields appears at present to be the most consistent with our observational result.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Zirker, J. B. Solar Phys. 148, 43–60 (1993).

    Article  ADS  Google Scholar 

  2. Bray, R. J., Cram, L. E., Durrant, C. J. & Loughhead, R. E. Plasma Loops in the Solar Corona (Cambridge Univ. Press, 1991).

    Book  Google Scholar 

  3. Parker, E. N. Astrophys. J. 264, 642–647 (1983).

    Article  ADS  Google Scholar 

  4. Parker, E. N. Astrophys. J. 330, 474–479 (1988).

    Article  ADS  Google Scholar 

  5. Cargill, P. J. Solar Phys. 147, 263–268 (1993).

    Article  ADS  Google Scholar 

  6. Kopp, R. A. & Poletto, G. Astrophys. J. 418, 496–505 (1993).

    Article  ADS  Google Scholar 

  7. Tsuneta, S. et al. Solar Phys. 136, 37–67 (1991).

    Article  ADS  CAS  Google Scholar 

  8. Klimchuk, J. A., Lemen, J. R., Feldman, U., Tsuneta, S. & Uchida, Y. Publs astr. Soc. Japan 44, L181–L185 (1992).

    ADS  Google Scholar 

  9. Efron, B. & Petrosian, V. Astrophys. J. 399, 345–352 (1992).

    Article  ADS  Google Scholar 

  10. Lee, T. T., Petrosian, V. & McTiernan, J. M. Astrophys. J. 412, 401–409 (1993).

    Article  ADS  Google Scholar 

  11. Porter, L. J. & Klimchuk, J. A. Astrophys. J. 454 (in the press).

  12. Vesecky, J. F., Antiochos, S. K. & Underwood, J. H. Astrophys. J. 233, 987–997 (1979).

    Article  ADS  CAS  Google Scholar 

  13. Rosner, R., Tucker, W. H. & Vaiana, G. S. Astrophys. J. 220, 643–665 (1978).

    Article  ADS  Google Scholar 

  14. Hood, A. W. & Priest, E. R. Astr. Astrophys. 77, 233–251 (1979).

    ADS  Google Scholar 

  15. Spicer, D. S., Mariska, J. T. & Boris, J. P. in Physics of the Sun (eds Sturrock, P. A., Holzer, T. E., Mihalas, D. M. & Ulrich, R. K.) 181–248 (Reidel, Dordrecht, 1986).

    Google Scholar 

  16. Tucker, W. H. Astrophys. J. 186, 285–289 (1973).

    Article  ADS  Google Scholar 

  17. Rosner, R., Golub, L., Coppi, B. & Vaiana, G. S. Astrophys. J. 222, 317–332 (1978).

    Article  ADS  Google Scholar 

  18. Golub, L., Maxson, C., Rosner, R., Serio, S. & Vaiana, G. S. Astrophys. J. 238, 343–348 (1980).

    Article  ADS  Google Scholar 

  19. Bateman, G. MHD Instabilities (MIT Press, Cambridge, MA, 1978).

    Google Scholar 

  20. Mikic, Z., Schnack, D. D. & Van Hoven, G. Astrophys. J. 361, 690–700 (1990).

    Article  ADS  Google Scholar 

  21. Craig, I. J. D. & Sneyd, A. D. Astrophys. J. 357, 653–661 (1990).

    Article  ADS  Google Scholar 

  22. Ionson, J. A. Astrophys. J. 226, 650–673 (1978).

    Article  ADS  CAS  Google Scholar 

  23. Davila, J. M. Astrophys. J. 317, 514–521 (1987).

    Article  ADS  Google Scholar 

  24. Hollweg, J. V. & Yang, G. J. geophys. Res. 93, 5423–5436 (1988).

    Article  ADS  Google Scholar 

  25. Ofman, L., Davila, J. M. & Steinofson, R. S. Astrophys. J. 444, 471–477 (1995).

    Article  ADS  Google Scholar 

  26. Penn, M. J. & Kuhn, J. R. Astrophys. J. 434, 807–810 (1994).

    Article  ADS  CAS  Google Scholar 

  27. Gary, D. E. et al. Bull. Am. astr. Soc. 27, 971 (1995).

    ADS  Google Scholar 

  28. Lites, B. W. et al. Astrophys. J. 446, 877–894 (1995).

    Article  ADS  Google Scholar 

  29. Klimchuk, J. A. & Canfield, R. C. in Solar Active Region Evolution: Comparing Models with Observations (eds Balasubramanian, K. S. & Simon, G.) 233–239 (Astr. Soc. Pacific, San Francisco, 1994).

    Google Scholar 

  30. Roumeliotis, G. Astrophys. J. (submitted).

  31. Mikic, Z. & McClymont, A. N. in Solar Active Region Evolution: Comparing Models with Observations (eds Balasubramanian, K. S. & Simon, G.) 225–232 (Astr. Soc. Pacific, San Francisco, 1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klimchuk, J., Porter, L. Scaling of heating rates in solar coronal loops. Nature 377, 131–133 (1995). https://doi.org/10.1038/377131a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/377131a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing