Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A cyclic–nucleotide–suppressible conductance activated by transducin in taste cells

Abstract

TASTE can be divided into four primary sensations: salty, sour, sweet and bitter. Salty and sour are directly transduced by apical channels1–4, whereas sweet and bitter utilize cyclic nucleotide second messengers5–11. We have shown that rod transducin is present in mammalian taste receptor cells, where it is activated by a bitter receptor and in turn activates a phosphodiesterase12. Here we introduce into frog taste cells peptides derived from transducin's phosphodiesterase–interaction region, which cause an inward whole–cell current in a subset of cells. We find that the peptides' effects are reversibly suppressed by IBMX and forskolin, indicative of a transducin-activated phosphodiesterase. Cyclic nucleotides suppress the whole-cell current, indicating that cyclic nucleotides may regulate taste-cell conductance. IBMX modifies taste-cell responses to two taste stimuli, implicating phosphodiesterase in taste transduction. Submicromolar cyclic nucleotides directly suppress the conductance of inside-out patches derived from the taste-cell plasma membrane, independently of protein phosphorylation. The channels are unusual in that they are suppressed, rather than activated by cyclic nucleotides. We propose that transducin, via phosphodiesterase, decreases cyclic nucleotide levels to activate the cyclic-nucleotide-suppressible conductance, leading to Ca2+ influx and taste-cell depolarization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kinnamon, S. C. Trends Neurosci. 11, 491–496 (1988).

    Article  CAS  Google Scholar 

  2. Avenet, P. & Lindemann, B. J. Membr. Biol. 112, 1–8 (1989).

    Article  CAS  Google Scholar 

  3. Gilbertson, T. A. Curr. Opin. Neurobiol. 3, 532–539 (1993).

    Article  CAS  Google Scholar 

  4. Margolskee, R. F. Curr. Opin. Neurobiol. 3, 526–531 (1993).

    Article  CAS  Google Scholar 

  5. Kurihara, K. FEBS Lett. 27, 279–281 (1972).

    Article  CAS  Google Scholar 

  6. Price, S. Nature 241, 54–55 (1973).

    Article  ADS  CAS  Google Scholar 

  7. Tonosaki, K. & Funakoshi, M. Nature 331, 354–356 (1988).

    Article  ADS  CAS  Google Scholar 

  8. Striem, B. J., Pace, V., Zehavi, V., Naim, M. & Lancet, D. Biochem. J. 260, 121–126 (1989).

    Article  CAS  Google Scholar 

  9. Striem, B. J., Naim, M. & Lindemann, B. Cell. Physiol. Biochem. 1, 46–54 (1991).

    Article  CAS  Google Scholar 

  10. Cummings, T. A., Powell, J. & Kinnamon, S. C. J. Neurophys. 70, 2326–2336 (1993).

    Article  CAS  Google Scholar 

  11. Avenet, P., Hofmann, F. & Lindemann, B. Nature 331, 351–354 (1988).

    Article  ADS  CAS  Google Scholar 

  12. Ruiz-Avila, L. et al. Nature 376, 80–85 (1995).

    Article  ADS  CAS  Google Scholar 

  13. McLaughlin, S. K., McKinnon, P. J. & Margolskee, R. F. Nature 357, 563–569 (1992).

    Article  ADS  CAS  Google Scholar 

  14. Rarick, H. M., Artemyev, N. O. & Hamm, H. E. Science 256, 1031–1033 (1992).

    Article  ADS  CAS  Google Scholar 

  15. Spickofsky, N. et al. Nature struct. Biol. 1, 771–781 (1994).

    Article  CAS  Google Scholar 

  16. Tang, J. M., Wang, J., Quandt, F. N. & Eisenberg, R. S. Pflügers Arch. 416, 347–350 (1990).

    Article  CAS  Google Scholar 

  17. Herness, M. S. Neurosci. Soc. Abstr. 19, 1428 (1993).

    Google Scholar 

  18. Fesenko, E. F., Kolesnikov, S. S. & Lyubarsky, A. L. Nature 313, 310–313 (1985).

    Article  ADS  CAS  Google Scholar 

  19. Haynes, L. W. & Yau, K.-W. Nature 317, 61–64 (1985).

    Article  ADS  CAS  Google Scholar 

  20. Nakamura, T. & Gold, G. H. Nature 325, 442–444 (1987).

    Article  ADS  CAS  Google Scholar 

  21. Kolesnikov, S. S., Rebric, T. I., Zhainazarov, A. B., Tavarkiladze, G. A. & Kalamkarov, G. R. FEBS Lett. 290, 167–170 (1991).

    Article  CAS  Google Scholar 

  22. Biel, M. et al. Proc. natn. Acad. Sci. U.S.A. 91, 3505–3509 (1994).

    Article  ADS  CAS  Google Scholar 

  23. Avenet, P. & Lindemann, B. J. Membr. Biol. 97, 223–240 (1989).

    Article  Google Scholar 

  24. Stryer, L. J. biol. Chem. 266, 10711–10714 (1991).

    CAS  Google Scholar 

  25. McBride, D. W. Jr & Roper, S. D. J. Membr. Biol. 124, 85–93 (1991).

    Article  CAS  Google Scholar 

  26. Fabiato, A. & Fabiato, F. J. Physiol., Paris 75, 463–505 (1979).

    CAS  Google Scholar 

  27. Kalinoski, D. L., Huque, T., LaMorte, V. J. & Brand, J. G. in Chemical Senses: Molecular Aspects of Taste and Odor Reception (eds Brand, J. G., Teeter, J. H., Cagan, M. R. & Kare, M. R.) 85–101 (Dekker, New York, 1989).

    Google Scholar 

  28. Sklar, P. B., Anholt, R. R. H. & Snyder, S. H. J. biol. Chem. 261, 15538–15543 (1986).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolesnikov, S., Margolskee, R. A cyclic–nucleotide–suppressible conductance activated by transducin in taste cells. Nature 376, 85–88 (1995). https://doi.org/10.1038/376085a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/376085a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing