Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Reassessment of millimetre-wave absorption coefficients in interstellar silicate grains

Abstract

ALMOST all of the elements heavier than helium in the interstellar medium reside in small solid dust particles1. Dust dominates the energy balance through its continuous absorption and emission of radiation. Its opacity provides the only direct means to assess the total mass in many interstellar regions: for example, in molecular clouds2, in circumstellar disks undergoing planet formation3–5 and even in some galaxies6. But there are almost no laboratory measurements of small-particle opacities at low temperatures for any of the principal constituents of interstellar dust at the far-infrared and millimetre wavelengths at which most observations are made. Here we report a laboratory study of absorption by forsterite (Mg2SiO4), the pure magnesian form of the mineral olivine, which is a main constituent of interstellar dust. We have measured millimetre-wave absorption spectra of synthesized amorphous and crystalline forsterite powders between 3.5 and 15 cm−1 at temperatures below 30 K, the region most germane to estimates of interstellar dust mass. Our measurements indicate that the absorption per unit mass for this silicate is several times larger than that normally assumed in astronomical research7–10. Estimates of the opacity of interstellar dust may have to be increased accordingly, causing the mass of interstellar particles derived from observations of the opacity to be lowered by a corre-sponding amount.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Mathis, J. S. A. Rev. Astr. Astrophys. 28, 37–70 (1990).

    Article  ADS  CAS  Google Scholar 

  2. Hildebrand, R. H. Q. Jl R. astr. Soc. 24, 267–282 (1983).

    ADS  Google Scholar 

  3. Beckwith, S. V. W. & Sargent, A. I. Astrophys. J. 381, 250–258 (1991).

    Article  ADS  Google Scholar 

  4. Aumann, H. H. et al. Astrophys. J. 278, L23–L27 (1984).

    Article  ADS  Google Scholar 

  5. Backman, D. E. & Paresce, F. in Protostars and Planets III (eds Levy, G. & Lunine, J. 1253–1304 (Univ. Arizona Press, Tucson, (1993).

    Google Scholar 

  6. Rowin-Robinson, M. et al. Nature 351, 719–721 (1991).

    Article  ADS  Google Scholar 

  7. Mathis, J. S. Rep. Prog. Phys. 56, 605–652 (1993).

    Article  ADS  CAS  Google Scholar 

  8. Pollack, J. B. et al. Astrophys. J. 421, 615–639 (1994).

    Article  ADS  CAS  Google Scholar 

  9. Draine, B. T. & Lee, H. M. Astrophys. J. 285, 89–108 (1984).

    Article  ADS  CAS  Google Scholar 

  10. Emerson, J. P. in Formation and Evolution of Low Mass Stars (eds Dupree, A. K. & Lago, M. T. V.) 21 (Kluwer, Dordrecht, 1988).

    Book  Google Scholar 

  11. Burlitch, J. M., Beeman, M. L., Riley, B. & Kohlstedt, D. L. Chem. Mater. 3, 692–698 (1991).

    Article  CAS  Google Scholar 

  12. Sievers, A. J. J. appl. Phys. 41, 980–987 (1970).

    Article  ADS  CAS  Google Scholar 

  13. Schlömann, E. Phys. Rev. A135, 413–419 (1964).

    Article  ADS  Google Scholar 

  14. Bosch, M. A. Phys. Rev. Lett. 40, 879–882 (1978).

    Article  ADS  Google Scholar 

  15. Mon, K. K., Chabal, Y. J. & Sievers, A. J. Phys. Rev. Lett. 35, 1352–1355 (1975).

    Article  ADS  CAS  Google Scholar 

  16. Strom, U. & Taylor, P. C. Phy. Rev. B16, 5512–5522 (1977).

    Article  ADS  CAS  Google Scholar 

  17. Manning, V. & Emerson, J. P. Mon. Wot. R. astr. Soc. 267, 361–378 (1994).

    Article  ADS  Google Scholar 

  18. Love, S. P., Ambrose, W. P. & Sievers, A. J. Phys. Rev. B39, 10352–10355 (1989).

    Article  CAS  Google Scholar 

  19. Anderson, P. W., Halperin, B. I. & Varma, C. M. Phil. Mag. 25, 1–5 (1972).

    Article  ADS  CAS  Google Scholar 

  20. Adams, F. C., Emerson, J. P. & Fuller, G. A. Astrophys. J. 357, 606–620 (1990).

    Article  ADS  Google Scholar 

  21. Beckwith, S. V. W. & Sargent, A. I. in Protostars and Planets III (eds Levy, E. H. & Lunine, J. 521–541 (Univ. Arizona Press, Tucson, 1992).

    Google Scholar 

  22. Mannings, V. & Emerson, J. P. Mon. Not. R. astr. Soc. 267, 361–378 (1994).

    Article  ADS  Google Scholar 

  23. Page, L. A., Cheng, E. S. & Meyer, S. S. Astrophys. J. 355, L1–L4 (1990).

    Article  ADS  Google Scholar 

  24. Wright, E. L. et al. Astrophys. J. 381, 200–209 (1991).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agladze, N., Sievers, A., Jones, S. et al. Reassessment of millimetre-wave absorption coefficients in interstellar silicate grains. Nature 372, 243–245 (1994). https://doi.org/10.1038/372243a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/372243a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing