Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Interaction between two homeodomain proteins is specified by a short C-terminal tail

An Erratum to this article was published on 17 November 1994

Abstract

TWO yeast homeodomain proteins, al and α2, interact and cooperatively bind the haploid-specific gene (hsg) operator, resulting in the repression of a set of genes involved in the determination of cell type1–5. The cooperative binding of al and α2 to DNA can be reconstituted in vitro using purified fragments of al and α2. Only the homeodomain is needed for al, but for α2 a C-terminal 22-amino-acid tail is required as well4,6–9. As most of the specificity of DNA binding appears to derive from al, we proposed4 that α2 functions in the al/α2 heterodimer to contact al with its tail. By construction and analysis of several chimaeric proteins, we investigate how two DNA-binding proteins, one with low intrinsic specificity (α2) and one with no apparent intrinsic DNA-binding ability (al), can together create a highly specific DNA-binding activity4. We show that the 22-amino-acid region of α2 immediately C-terminal to the homeodomain, when grafted onto the al homeodomain, converts al to a strong DNA-binding protein. This α2 tail can also be attached to the Drosophila engrailed homeodomain, and the chimaeric protein now binds cooperatively to DNA with al, showing how a simple change can create a new homeodomain combination that specifically recognizes a new DNA operator.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Strathern, J. N., Hicks, J. & Herskowitz, I. J. molec. Biol. 147, 357–372 (1981).

    Article  CAS  Google Scholar 

  2. Goutte, C. & Johnson, A. D. Cell 52, 875–882 (1988).

    Article  CAS  Google Scholar 

  3. Dranginis, A. M. Nature 347, 682–685 (1990).

    Article  ADS  CAS  Google Scholar 

  4. Goutte, C. & Johnson, A. D. J. molec. Biol. 233, 359–371 (1993).

    Article  CAS  Google Scholar 

  5. Goutte, C. & Johnson, A. D. EMBO J. 13, 1434–1442 (1994).

    Article  CAS  Google Scholar 

  6. Mak, A. & Johnson, A. D. Genes Dev. 7, 1862–1870 (1993).

    Article  CAS  Google Scholar 

  7. Strathern, J., Shafer, B., Hicks, J. & McGill, C. Genetics 120, 75–81 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Goutte, C. & Johnson, A. D. EMBO J. 13, 1434–1442 (1994).

    Article  CAS  Google Scholar 

  9. Philips, C. L., Stark, M. R., Johnson, A. D. & Dahlquist, F. W. Biochemistry 33, 9294–9302 (1994).

    Article  Google Scholar 

  10. Goutte, C. Combinatorial Control of the Yeast Homeodomain Proteins a1 and α2 (UCSF Press, San Francisco, 1992).

    Google Scholar 

  11. Philips, C. L., Vershon, A. K., Johnson, A. D. & Dahlquist, F. W. Genes Dev. 5, 764–772 (1991).

    Article  Google Scholar 

  12. Wolberger, C., Vershon, A. K., Liu, B., Johnson, A. D. & Pabo, C. O. Cell 67, 517–528 (1991).

    Article  CAS  Google Scholar 

  13. Johnson, A. D. in Transcriptional Regulation (eds McKnight, S. L. & Yamamoto, K. R.) 975–1005 (Cold Spring Harbor Laboratory Press, Plainview, 1992).

    Google Scholar 

  14. Vershon, A. K. & Johnson, A. D. Cell 72, 105–112 (1993).

    Article  CAS  Google Scholar 

  15. Xue, D., Tu, Y. & Chalfie, M. Science 261, 1324–1328 (1993).

    Article  ADS  CAS  Google Scholar 

  16. Chan, S.-K. & Mann, R. S. Genes Dev. 7, 796–811 (1993).

    Article  CAS  Google Scholar 

  17. Lin, L. & McGinnis, W. Genes Dev. 6, 1071–1081 (1992).

    Article  CAS  Google Scholar 

  18. Kissinger, C. R., Liu, B., Martin-Bianco, E., Kornberg, T. B. & Pabo, C. O. Cell 63, 579–590 (1990).

    Article  CAS  Google Scholar 

  19. Hall, M. N. & Johnson, A. D. Science 237, 1007–1012 (1987).

    Article  ADS  CAS  Google Scholar 

  20. Sauer, R. T., Smith, D. L. & Johnson, A. D. Genes Dev. 2, 807–816 (1988).

    Article  CAS  Google Scholar 

  21. Mullis, K. B. et al. Cold Spring Harbor Symp. quant. Biol. 51, 263–273 (1986).

    Article  CAS  Google Scholar 

  22. Higuchi, R. in PCR Protocols: A Guide to Methods and Applications (eds Innis, M. A., Gelfand, D. H., Sninsky, J. J. & White, T. J.) 177–183 (Academic, San Diego, 1990).

    Google Scholar 

  23. Studier, F. W. & Moffatt, B. A. J. molec. Biol. 189, 113–130 (1986).

    Article  CAS  Google Scholar 

  24. Smith, D. L. & Johnson, A. D. Cell 68, 133–142 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stark, M., Johnson, A. Interaction between two homeodomain proteins is specified by a short C-terminal tail. Nature 371, 429–432 (1994). https://doi.org/10.1038/371429a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/371429a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing