Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Activation of p70/p85 S6 kinase by a pathway independent of p21fi ras

Abstract

THE enzymes p70s6k and p85s6k are two isoforms of the same kinase1,2 and are important in mitogenesis2–4. Both isoforms are activated by a complex phosphorylation event5 and lie on a common signalling pathway4, distinct from that of the p42mapk/ p44mapk kinases6 Activation of P42mapkp44mapk is triggered by sequential activation of the GDP– GTP exchange factor Sos, the GTP-binding protein p21ras, and protein kinases p74rafand p47mek (refs 7–10). As p21ras transformed cells have increased S6 phosphorylation11, we tested whether the p70s6k/p85s6k signalling pathway bifurcates between p21ras and P42mapk/p44mapk. We found that mutants of p74raf and p2ras blocked activation of epitope-tagged p44mapk but not epitope-tagged p70s6k. Moreover, in cells expressing human platelet-derived growth factor receptors lacking the kinase-insert domain, the growth factor activates p21ras but not p70s6k/p85s6k. The critical autophosphorylation site for p70s6k/ p85s6k activation within this domain is a tyrosine at residue 751. Our results show that the p70s6k/p85s6k signalling pathway is independent of p21ras, that it bifurcates from the p2lras pathway at the receptor, and that it is initiated by autophosphorylation at a specific site.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kozma, S. C. & Thomas, G. in The Protein Kinase Facts Book (eds Hardie, D. G. & Hanks, S.) (in the press).

  2. Reinhard, C. et al. EMBO J. 13, 1557–1565 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lane, H. A. et al. Nature 363, 170–172 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Chung, J. et al. Cell 69, 1227–1236 (1992).

    Article  CAS  PubMed  Google Scholar 

  5. Ferrari, S. et al. J. biol. Chem. 268, 16091–16094 (1993).

    CAS  PubMed  Google Scholar 

  6. Ballou, L. M., Luther, H. & Thomas, G. Nature 349, 348–350 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Feig, L. A. Science 260, 767–768 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Crews, C. M. & Erikson, R. L. Cell 74, 215–217 (1993).

    Article  CAS  PubMed  Google Scholar 

  9. Pelech, S. L. Curr. Biol. 3, 513–515 (1993).

    Article  CAS  PubMed  Google Scholar 

  10. Egan, S. E. & Weinberg, R. A. Nature 365, 781–782 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Blenis, J. & Erikson, R. L. J. Virol. 50, 966–969 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Egan, S. E. et al. Nature 363, 45–51 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Schaap, D. et al. J. biol. Chem. 268, 20232–20236 (1993).

    CAS  PubMed  Google Scholar 

  14. Kolodziej, P. A. & Young, R. A. Meth. Enzym. 194, 508–519 (1991).

    Article  CAS  PubMed  Google Scholar 

  15. Wood, K. W. et al. Cell 68, 1041–1050 (1992).

    Article  CAS  PubMed  Google Scholar 

  16. Feig, L. A. & Cooper, G. M. Molec. cell. Biol. 8, 3235–3243 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kolch, W. et al. Nature 364, 249–252 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. de Vries-Smits, A. M. M. et al. Nature 357, 602–604 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Westermark, B. et al. Proc. natn. Acad. Sci. U.S.A. 87, 128–132 (1990).

    Article  ADS  CAS  Google Scholar 

  20. Fantl, W. J. et al. Cell 69, 413–423 (1992).

    Article  CAS  PubMed  Google Scholar 

  21. Burgering, B. M. Th. et al. Cell Growth Diff. 5, 1–7 (1994).

    Google Scholar 

  22. Arvidsson, A. K. et al. Molec. cell. Biol. (in the press).

  23. Kazlauskas, A. et al. Molec. cell. Biol. 12, 2534–2544 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nishimura, R. et al. Molec. cell. Biol. 13, 6889–6896 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chung, J. et al. Nature 370, 71–75 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Rodriguez-Viciana, P. et al. Nature 370, 527–532 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Lane, H. A. et al. EMBO J. 11, 1743–1749 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Boulton, T. G. et al. Science 249, 64–67 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Meloche, S., Pagès, G. & Pouysségur, J. Molec. Biol. Cell 3, 63–71 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wennström, S. et al. Oncogene 9, 651–660 (1994).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ming, XF., Burgering, B., Wennstrom, S. et al. Activation of p70/p85 S6 kinase by a pathway independent of p21fi ras. Nature 371, 426–429 (1994). https://doi.org/10.1038/371426a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/371426a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing