Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Disordered waves in a homogeneous, motionless excitable medium

Abstract

EXCITABLE media are physical, chemical or biological systems in which energy dissipation in disturbed regions is compensated by energy supply1–4, so that the media can support waves without attenuation. Well-known examples are nervous tissue, heart muscle, retinae, aggregating amoebae and the autocatalytic Belousov–Zhabotinsky (BZ) reaction. Most familiar in such systems are periodic target and spiral waves, but a number of simulations5–11 have suggested that disordered waves can also occur in a homogeneous and motionless excitable medium. In all experimental observations reported so far, however, hydrodynamic flow12,13 or inhomogeneities14–15 were necessary to induce disorder. Here we present experimental evidence for disordered chemical waves in a convection-free and homogeneous medium, a gel containing a light-sensitive BZ reaction mixture. We find instabilities transverse to the wavefront ('ripples'), wave breakup leading to aperiodic spiral formation, labyrinthine structures, and erratic motion of non-spiralling wave fragments. The formal analogy of the BZ reagent with other excitable media suggests that this disordered behaviour may be generic.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Zykov, V. S. Simulations of Wave Processes in Excitable Media (Manchester Univ. Press, 1988).

    Google Scholar 

  2. Holden, A. V., Markus, M. & Othmer, H. G. (eds) Nonlinear Wave Processes in Excitable Media (Plenum, New York, 1991).

    Google Scholar 

  3. Winfree, A. T. in Lectures in Complex Systems (eds Nadel, L. & Stein, D.) 207–298 (Addison-Wesley, Reading, Massachusetts, 1993).

    Google Scholar 

  4. Markus, M. & Hess, B. Nature 347, 56–58 (1990).

    Article  ADS  CAS  Google Scholar 

  5. Ito, H. & Glass, L. Phys. Rev. Lett. 66, 671–674 (1991).

    Article  ADS  CAS  Google Scholar 

  6. Bär, M. & Eiswirth, M. Phys. Rev. E48, R1635–R1637 (1993).

    ADS  Google Scholar 

  7. Panfilov, A. V. & Hogeweg, P. Phys. Lett. A176, 295–299 (1993).

    Article  Google Scholar 

  8. Gerhardt, M., Schuster, H. & Tyson, J. J. Science 247, 1563–1566 (1990).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  9. Panifilov, A. V. & Holden, A. V. Phys. Lett. A151, 23–26 (1990); Int. J. Bifurc. Chaos 1, 219–225 (1991).

    Article  Google Scholar 

  10. Courtemanche, M. & Winfree, A. T. Int. J. Bifurc. Chaos 1, 431–444 (1991).

    Article  Google Scholar 

  11. Karma, A. Phys. Rev. Lett. 71, 1103–1106 (1993).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  12. Algladze, K. I., Krinsky, V. I. & Pertsov, A. M. Nature 308, 834–835 (1984).

    Article  ADS  Google Scholar 

  13. Markus, M., Müller, S. C., Plesser, Th. & Hess, B. Biol. Cybern. 57, 187–195 (1987).

    Article  CAS  Google Scholar 

  14. El-Sherif, N., Mehra, R., Gough, W. B. & Zeiler, R. H. Circulation Res. 51, 152–166 (1982).

    Article  CAS  Google Scholar 

  15. Maselko, I. & Showalter, K. Physica D49, 21–32 (1991).

    CAS  Google Scholar 

  16. Kuhnert, L. Nature 319, 393–394 (1986).

    Article  ADS  CAS  Google Scholar 

  17. Kuhnert, L., Agladze, K. I. & Krinsky, V. I. Nature 337, 224–247 (1989).

    Article  ADS  Google Scholar 

  18. Markus, M., Nagy-Ungvarai, Zs. & Hess, B. Science 257, 225–227 (1992).

    Article  ADS  CAS  Google Scholar 

  19. Steinbock, O., Zykov, V. & Müller, S. C. Nature 366, 322–324 (1993).

    Article  ADS  CAS  Google Scholar 

  20. Yamaguchi, T., Kuhnert, L., Nagy-Ungvarai, Zs., Müller, S. C. & Hess, B. J. phys. Chem. 95, 5831–5837 (1991).

    Article  CAS  Google Scholar 

  21. Horváth, D., Petrov, V., Scott, S. K. & Showalter, K. J. chem. Phys. 98, 6332–6343 (1993).

    Article  ADS  Google Scholar 

  22. Kuramoto, Y. Prog. theor. Phys. 63, 1885–1903 (1980); Chemical Oscillations, Waves and Turbulence Ch. 7 (Springer, Berlin, 1984).

    Article  ADS  CAS  Google Scholar 

  23. Neumann, B., Nagy-Ungvarai, Zs. & Müller, S. C. Chem. Phys. Lett. 211, 36–40 (1993).

    Article  ADS  CAS  Google Scholar 

  24. Nagy-Ungvarai, Zs., Ungvarai, J., Müller, S. C. & Hess, B. J. chem. Phys. 97, 1004–1009 (1992).

    Article  ADS  CAS  Google Scholar 

  25. Winfree, A. T. in Cardiac Mapping (eds Borggrefe, M. & Breithardt, G. Ch. 41 (Futura, Mount Kisco, New York, 1993).

    Google Scholar 

  26. Bauer, M., Heng, H. & Martienssen, W. Phys. Rev. Lett. 71, 521–524 (1993).

    Article  ADS  CAS  Google Scholar 

  27. Gang, H. & Zhilin, Q. Phys. Rev. Lett. 72, 68–71 (1993).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Markus, M., Kloss, G. & Kusch, I. Disordered waves in a homogeneous, motionless excitable medium. Nature 371, 402–404 (1994). https://doi.org/10.1038/371402a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/371402a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing